Python自动化炒股:使用FastAPI和Kubernetes部署股票数据服务的最佳实践

Python自动化炒股:使用FastAPI和Kubernetes部署股票数据服务的最佳实践

在当今数字化时代,自动化炒股已成为许多投资者的首选。Python以其强大的数据处理能力和丰富的库支持,成为自动化炒股的不二之选。本文将介绍如何使用FastAPI和Kubernetes部署股票数据服务,以实现高效、可扩展的股票数据管理。

引言

自动化炒股的核心在于实时获取股票数据,并基于这些数据做出交易决策。FastAPI是一个现代、快速(高性能)的Web框架,用于构建API,而Kubernetes是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。结合这两者,我们可以构建一个高效、可靠的股票数据服务。

环境准备

在开始之前,请确保你的环境中已安装以下工具:

  • Python 3.8 或更高版本
  • Docker
  • Kubernetes(可以是本地的minikube或云服务如Google Kubernetes Engine)
  • FastAPI
  • Uvicorn(FastAPI的ASGI服务器)
  • SQLAlchemy(用于数据库操作)

可以通过以下命令安装所需的Python库:

pip install fastapi uvicorn sqlalchemy

构建FastAPI应用

首先,我们创建一个简单的FastAPI应用来提供股票数据服务。

1. 初始化项目结构

/stock-data-service
    /app
        __init__.py
        main.py
        models.py
        database.py
    /requirements.txt

2. 编写FastAPI应用

main.py中,我们定义路由和业务逻辑。

from fastapi import FastAPI
from .database import SessionLocal, engine
from .models import StockData

app = FastAPI()

@app.on_event("startup")
async def startup():
    await SessionLocal.drop(engine)

@app.on_event("shutdown")
async def shutdown():
    await SessionLocal.close()

@app.get("/stock-data")
async def read_stock_data():
    async with SessionLocal() as session:
        stock_data = await session.execute("SELECT * FROM stock_data")
        return [dict(row) for row in stock_data]

3. 定义数据库模型

models.py中,我们定义股票数据的模型。

from sqlalchemy import Column, Integer, String, Float, DateTime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

Base = declarative_base()

class StockData(Base):
    __tablename__ = "stock_data"

    id = Column(Integer, primary_key=True, index=True)
    symbol = Column(String, index=True)
    price = Column(Float)
    timestamp = Column(DateTime)

    def __repr__(self):
        return f"<StockData(symbol='{self.symbol}', price={self.price}, timestamp={self.timestamp})>"

4. 配置数据库

database.py中,我们配置数据库连接。

from sqlalchemy import create_engine
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
from sqlalchemy.orm import sessionmaker
from .models import Base

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db"
engine = create_engine(
    SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}
)
async_engine = create_async_engine(
    SQLALCHEMY_DATABASE_URL, future=True, echo=True
)

async def init_db():
    async with async_engine.begin() as conn:
        await conn.run_sync(Base.metadata.create_all)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
AsyncSessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=async_engine)

部署到Kubernetes

1. 创建Dockerfile

在项目根目录下创建Dockerfile,用于构建Docker镜像。

FROM python:3.8-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]

2. 构建和推送Docker镜像

使用以下命令构建并推送Docker镜像到你的Docker Hub或任何其他容器镜像仓库。

docker build -t yourusername/stock-data-service:latest .
docker push yourusername/stock-data-service:latest

3. 编写Kubernetes部署文件

创建deployment.yaml文件,定义Kubernetes部署配置。

apiVersion: apps/v1
kind: Deployment
metadata:
  name: stock-data-service
spec:
  replicas: 2
  selector:
    matchLabels:
      app: stock-data-service
  template:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值