Python自动化炒股:使用FastAPI和Kubernetes部署股票数据服务的最佳实践
在当今数字化时代,自动化炒股已成为许多投资者的首选。Python以其强大的数据处理能力和丰富的库支持,成为自动化炒股的不二之选。本文将介绍如何使用FastAPI和Kubernetes部署股票数据服务,以实现高效、可扩展的股票数据管理。
引言
自动化炒股的核心在于实时获取股票数据,并基于这些数据做出交易决策。FastAPI是一个现代、快速(高性能)的Web框架,用于构建API,而Kubernetes是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。结合这两者,我们可以构建一个高效、可靠的股票数据服务。
环境准备
在开始之前,请确保你的环境中已安装以下工具:
- Python 3.8 或更高版本
- Docker
- Kubernetes(可以是本地的minikube或云服务如Google Kubernetes Engine)
- FastAPI
- Uvicorn(FastAPI的ASGI服务器)
- SQLAlchemy(用于数据库操作)
可以通过以下命令安装所需的Python库:
pip install fastapi uvicorn sqlalchemy
构建FastAPI应用
首先,我们创建一个简单的FastAPI应用来提供股票数据服务。
1. 初始化项目结构
/stock-data-service
/app
__init__.py
main.py
models.py
database.py
/requirements.txt
2. 编写FastAPI应用
在main.py
中,我们定义路由和业务逻辑。
from fastapi import FastAPI
from .database import SessionLocal, engine
from .models import StockData
app = FastAPI()
@app.on_event("startup")
async def startup():
await SessionLocal.drop(engine)
@app.on_event("shutdown")
async def shutdown():
await SessionLocal.close()
@app.get("/stock-data")
async def read_stock_data():
async with SessionLocal() as session:
stock_data = await session.execute("SELECT * FROM stock_data")
return [dict(row) for row in stock_data]
3. 定义数据库模型
在models.py
中,我们定义股票数据的模型。
from sqlalchemy import Column, Integer, String, Float, DateTime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
Base = declarative_base()
class StockData(Base):
__tablename__ = "stock_data"
id = Column(Integer, primary_key=True, index=True)
symbol = Column(String, index=True)
price = Column(Float)
timestamp = Column(DateTime)
def __repr__(self):
return f"<StockData(symbol='{self.symbol}', price={self.price}, timestamp={self.timestamp})>"
4. 配置数据库
在database.py
中,我们配置数据库连接。
from sqlalchemy import create_engine
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
from sqlalchemy.orm import sessionmaker
from .models import Base
SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db"
engine = create_engine(
SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}
)
async_engine = create_async_engine(
SQLALCHEMY_DATABASE_URL, future=True, echo=True
)
async def init_db():
async with async_engine.begin() as conn:
await conn.run_sync(Base.metadata.create_all)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
AsyncSessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=async_engine)
部署到Kubernetes
1. 创建Dockerfile
在项目根目录下创建Dockerfile
,用于构建Docker镜像。
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]
2. 构建和推送Docker镜像
使用以下命令构建并推送Docker镜像到你的Docker Hub或任何其他容器镜像仓库。
docker build -t yourusername/stock-data-service:latest .
docker push yourusername/stock-data-service:latest
3. 编写Kubernetes部署文件
创建deployment.yaml
文件,定义Kubernetes部署配置。
apiVersion: apps/v1
kind: Deployment
metadata:
name: stock-data-service
spec:
replicas: 2
selector:
matchLabels:
app: stock-data-service
template: