计算机毕业设计 Tensorflow和Keras实现端到端的不定长中文字符检测和识别

该项目基于Tensorflow和Keras实现了端到端的不定长中文字符检测和识别,包括CTPN文本检测和DenseNet+CTC的识别模型。提供了数据准备、模型训练及效果展示,数据集包含约364万张图片,训练集与验证集按99:1划分。训练结果在GPU环境下达到高精度,并分享了代码仓库链接。
摘要由CSDN通过智能技术生成


0 前言

基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别

提示:适合用于课程设计或毕业设计,工作量达标,源码开放

项目分享:

https://gitee.com/asoonis/feed-neo


1 项目说明

文本检测:CTPN
文本识别:DenseNet + CTC

环境部署

sh setup.sh

注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释

Demo
将测试图片放入test_images目录,检测结果会保存到test_result中

python demo.py

2 模型训练

CTPN训练
详见ctpn/README.md

DenseNet + CTC训练

1、数据准备

  • 共约364万张图片,按照99:1划分成训练集和验证集
  • 数据利用中文语料库(新闻 + 文言文),通过字体、大小、灰度、模糊、透视、拉伸等变化随机生成
  • 包含汉字、英文字母、数字和标点共5990个字符
  • 每个样本固定10个字符,字符随机截取自语料库中的句子
  • 图片分辨率统一为280x32
    图片解压后放置到train/images目录下,描述文件放到train目录下

2、训练

cd train
python train.py

3、结果
val acc predict model
0.983 8ms 18.9MB

  • GPU: GTX TITAN X
  • Keras Backend: Tensorflow

4、生成自己的样本
可参考SynthText_Chinese_version,TextRecognitionDataGenerator和text_renderer

3 效果展示

在这里插入图片描述

项目分享:

https://gitee.com/asoonis/feed-neo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值