知网外文文献如何获取全文

我们在查找文献时会发现,知网中的外文文献基本都是摘要,没有全文下载。那么如何获取知网外文文献全文呢?方法如下:

找到文献被收录在哪个数据库,然后去文献来源数据库中获取该文献,但首先你需要有文献来源数据库资源,如果你没有,可去文献党下载器获取数据库资源。

实例演示

例如 下面这篇知网外文文献在知网无法下载全文,但可看到文献来源数据库为Elsevier(sciencedirect)数据库:

去Elsevier(sciencedirect)数据库获取该文献是最准最快最省事的方法了。如果你没有Elsevier(sciencedirect)数据库资源,可去文献党下载器网站获取,步骤如下:

1.找到文献党下载器官网

 2.在文献党下载器官网下载安装客户端

3.登录客户端进入资源库,在资源库点击需要使用的数据库名称即可进入该数据库查找获取文献了。例如点击sciencedirect名称进入该数据库:

 

进入sciencedirect数据库直接输入篇名检索文献:

检索到该文献,在文献详情页点击“View PDF”进入文献下载页,文献详情页还可下载文献补充材料:

 

 

在文献下载页点击保存键获取全文:

 

 

这篇知网外文文献就下载好了,获取知网外文文献全文也可用谷歌学术和sci-hub,但,谷歌学术是部分文献可直接下载,而sci-hub也是收录文献有限,如果收录才可下载,所以用谷歌学术和sci-hub只能说是需要碰运气。而去收录文献的文献来源数据库下载文献就简单高效多了。

另外,因为知网和外文数据库机构只是合作关系,基本上只提供摘要不提供全文下载,所以查找下载外文文献还是建议去外文数据库,如:SpringerLink、Elsevier(sciencedirect)、IEEE、Wiley 、Web of Science、PubMed 、EI、ProQuest(国外学位论文)、Taylor & Francis等等,还有很多针对某一领域研究的数据库,如:英国物理学会(IOP)、美国化学会(ACS)、美国微生物学会(ASM)、国际光学工程学会(SPIE)、英国皇家化学学会(RSC)等等。还有世界知名期刊:nature《自然》、science《科学》、CELL《细胞》、PNAS《美国科学院院报》等数据库。

Web of Science数据库有超强的文献检索功能,可先用Web of Science数据库检索,然后去文献来源数据库获取文献。

外文文献在哪里查找下载比较好

个人获取Wiley 、ScienceDirect、SpringerLink三个数据库文献的方法

Web of Science数据库功能介绍及个人使用途径

 

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值