1.2 数字技术基础

云开本科

全套习题资料,在线课程,详见wx公众号/小程序“云开本科”

随堂练习

一、单选题

1.【答案】A
【解析】八进制数41转换为十进制为33。十六进制数2F转换为十进制为47。二进制数101101转换为十进制数为45。故本题选择A选项。
2.【答案】A
【解析】由于电路的复杂性因素,电脑中都采用二进制数,只有0和1两个数码,逢二进一,最容易用电路来表达,比如0代表电路不通,1代表电路通畅。故本题选择A选项。
3.【答案】C
【解析】题中已知“异或”逻辑运算的原则是相同为0、不同为1。因此:
1001
⊕ 0011
——————
1010
4.【答案】A
【解析】8位补码中,首位是符号位,表示数字的正负,0为正,1为负。题目要求最大,那么先确定这是一个正数,即首位是0,根据补码的定义,我们知道,对于一个正数,它的原码、反码、补码都是相同的。也就是说,它的补码就是该数字的实际大小。显然,将所有的1置高位就可以了,得到结果:0111 1000B,转换成十进制采用完全展开,也就是120。故选A。
5.【答案】C
【解析】本题有两种解题方法:
第一种:按照下图求范围

第二种:128=10000000,可知数值位已经占了8位,本题题干中强调了带符号整数,所以必然存在一个符号位。所以-128在计算机中至少是9位来表示的。但计算机中对于数值表示的长度都是由固定标准的,由8位、16位、32位、64位。因此最合适的应选C选项。
6.【答案】A
【解析】[-0]原=10000000
[-0]反=11111111
[-0]补=00000000
7.【答案】C
【解析】八位无符号二进制能表示的最大十进制数是255。因为最大的8位无符号二进制数是11111111,所以对应的十进制数是127+1*26+125+1*24+123+1*22+121+1*20=255。故选C。
8.【答案】C
【解析】如图所示。

9.【答案】B
【解析】计算机中的字节是常用单位,它的英文名称是byte。故选:B。字节(Byte):是计算机信息技术用于计量存储容量的一种计量单位。
10.【答案】D
【解析】n个比特可以表示2^n个数。本题中4个比特,可以表示:
0000、0001、0010、0011、0100、0101、0110、0111、
1000、1001、1010、1011、1100、1101、1110、1111。
共计16个数。因此本题选择D选项。
11.【答案】C
【解析】分别将ABD四个选项转换为十进制进行对比:
A:(11001011)2 = 203D
B:(257)8 = 175D
D:(C3)16 = 195D
因此本题C选项最大。
12.【答案】C
【解析】数值在各计算机中的编码方式都是相同的。正整数的原码、补码、反码都是它本身; 负数的反码:从原码变形,符号位保持不变,其他位翻转;负数的补码:反码+1
13.【答案】D
【解析】如图所示。

14.【答案】B
【解析】100(十六进制) = 256(十进制),故本题选择B选项。
15.【答案】D
【解析】一个字节表示8个二进制数,从最小的00000000(0)—直到最大的11111111(255),共有256个二进制编码。故本题答案选D。
16.【答案】D
【解析】计算机采用二进制不是因为人们的习惯,是因为二进制物理上容易实现,规则简单,逻辑性强!故选D。
17.【答案】B
【解析】八进制用字母O或字母Q,二进制加B,十六进制加H,十进制可以加D,也可以不加。故本题选B。
18.【答案】A
【解析】bit的中文含义是位,也叫比特,是英文binary digit的缩写。位是计算机内部数据储存的最小单位。故本题选择A选项。
19.【答案】B
【解析】10010010(二进制) = 146(十进制)、221(八进制) = 145(十进制)、94(十六进制) = 148(十进制)。故本题最小的数是B选项。
20.【答案】A
【解析】十进制整数100转换为二进制数是(1100100)。十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数。再用2去除商,又会得到一个商和余数,如此进行,直到商为小于1时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。故正确答案为A。
21.【答案】D
【解析】计算机中的真值是指一个数在现实中的实际数值,它可以带有正负号。求出其原码后,将其符号位使用日常习惯的正负标识,即为真值。
22.【答案】C
【解析】目前最广泛使用的(尤其在微机上)的字符编码形式就是ASCII码(即美国信息交换标准码)。故选C。
23.【答案】C
【解析】常用的逻辑运算符是非NOT、与AND、或OR。没有NO的写法,故本题选择C选项。
24.【答案】C
【解析】-128的补码是10000000;N 位补码中,“1000……00”表示整数-2^(n-1);

25.【答案】C
【解析】1、算数运算原则为:0+0=0,0+1=1,1+1=10(向高位进一)
2、逻辑加法通常用符号“+”或“∨”来表示。原则如下:
0+0=0, 0∨0=0
0+1=1, 0∨1=1
1+0=1, 1∨0=1
1+1=1, 1∨1=1
26.【答案】C
【解析】无标识的数认为是十进制。1023-377Q+100H=1023-255+256=1024。故选C。
27.【答案】D
【解析】算术运算时,需要考虑进位和借位的情况。逻辑运算是按位独立进行的,所以并不存在进位和借位的情况。因此本题选D。
28.【答案】B
【解析】8位无符号二进制数的表示范围是02^8-1(0255),因此本题只有B选项满足条件。
29.【答案】D
【解析】2×3=10 所以满6进1 为6进制 3×5=15=2×6+3 所以3×5=23。故选D。
30.【答案】A
【解析】左边的最高位取1,代表负号。把其余15个0,求反加一,得到原码:1000 0000 0000 0000,即-32768的补码。故选A。
31.【答案】A
【解析】即可2的10次方=1024。
32.【答案】C
【解析】假设这个为n进制,则 15 = 1n +5,而73用10进制的话,就是21,21-5 =n ,所以n =16,
根据这个规则,75= 10进制的35,35 = 216+3,所以等于16进制的 23。
33.【答案】B
【解析】一位十六进制数对应于4位二进制。本题需要表示8个二进位,对应于十六进制就需要8/4=2位。
34.【答案】A
【解析】常见的存储容量的单位有bit、B、KB、MB、GB、TB。因此排除法可知,本题A选项不属于存储容量的单位。
35.【答案】A
【解析】八进制用字母O或字母Q,二进制加B,十六进制加H,十进制可以加D,也可以不加。故本题选A。
36.【答案】B
【解析】先求得-44的8位二进制原码:10101100,最高位是符号位,负数为1,低7位是绝对值44d=101100b,补齐7位是0101100.然后对原码的绝对值部分求反加1得:1010100,补上符号位(最高位)1得:11010100,这就是-44的8位二进制补码。

二、判断题

37.【答案】×
【解析】计算机内部是一个二进制世界,计算机只认识1和0,内部的运算均是二进制运算。因此本题错误。
38.【答案】×
【解析】计算机中英文字母采用ASCII码存储,每一个ASCII字符存储占用1字节。2000个字母占用2000字节。因此文件大小达不到4KB。故本题错误。
39.【答案】√
【解析】本题正确,当浮点机和定点机中数的位数相同时,浮点数的表示范围比定点数的范围大的多。
40.【答案】×
【解析】本题错误,计算机中标识数值的符号位时,使用0表示正数,使用1表示负数。
41.【答案】√
【解析】计算机中的数值表示方法有原码、反码和补码三种。补码是用来解决负数在计算机中的表示问题的。正数的补码就是其本身;负数的补码是在其原码的基础上,符号位不变, 其余各位取反,最后+1。

三、填空题

42.【答案】1011001.101
【解析】十进制数89.625分成两部分来转换,其中正数部分的89转换为二进制采用除2取余,逆序排列方法:
89÷2=44 余数→1;
44÷2=22 余数→0;
22÷2=11 余数→0;
11÷2=5 余数→1;
5÷2=2 余数→1;
2÷2=1 余数→0;
1÷2=0 余数→1。
余数逆序后为:1011001.
小数部分0.625转换为二进制采用乘2取整,顺序排列方法:0.6252=1.25═取出整数部分1;
0.25
2=0.5═取出整数部分0;
0.5*2=1═取出整数部分1.
小数部分顺序排列后为:101.
所以十进制的89.625对应的二进制是1011001.101. 故选:A。
十进制整数转换为二进制整数采用“除2取余,逆序排列法”。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.十进制小数转换成二进制小数采用“乘2取整,顺序排列“法.具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位.或者达到所要求的精度为止。
43.【答案】0.1010…
【解析】将0.6531乘以2,得到1.3062。取1作为第一位二进制数字,即0.1。
将0.3062乘以2,得到0.6124。取0作为第二位二进制数字,即0.10。
将0.6124乘以2,得到1.2248。取1作为第三位二进制数字,即0.101。
将0.2248乘以2,得到0.4496。取0作为第四位二进制数字,即0.1010。
…以此类推
继续重复以上步骤直到小数部分为0,即可得到0.6531的二进制表示为0.1010100011101101(精度可以按需求调整)。
44.【答案】逻辑乘
【解析】二进制信息最基本的逻辑运算有三种,即逻辑加、取反以及逻辑乘。
45.【答案】31
【解析】字长为5位的无符号二进制表示十进制数值范围是02^5-1,即031。无符号二进制数的第一位可为0,所以当为全0时最小值为0,当全为1时最大值为31。
46.【答案】2
【解析】非零无符号二进制整数之后添加1个0,相当于向左移动了1位,也就是扩大了原来数的2倍。在一个非零无符号二进制整数之后去掉1个0,相当于向右移动了1位,也就是变为原数的1/2。本题只需简单举例验证即可,例如原数为10B,添加一个0后变成100B,翻了两倍。
47.【答案】11111111
【解析】十六进制FF转换成二进制,每一位展开为四位二进制也就是11111111。故答案为:11111111。
48.【答案】-7
【解析】既然最小,最高位符号位必然为1,表示负数。那么还剩下1个1和2个0。由于补码到原码的转换过程中,有一个取反的过程,对于负数而言,补码表示时,其数值为应该保持最小,这样取反之后,数值位也就越大,构成的负数也就越小。即1001;对其-1,得到1000,再取反1111,也就是-7。
49.【答案】浮点数
【解析】在计算机中数值分成整数/定点数和浮点数,数值在计算机中以0和1的二进制形式存放,每个数据占据内存的字节整数倍,例如8位,16位,32位等
50.【答案】11100001
【解析】-31的原码是10011111,反码为11100000,加1得到补码为11100001。
51.【答案】4
【解析】BCD码(Binary-Coded Decimal‎),用4位二进制数来表示1位十进制数中的0~9这10个数码,是一种二进制的数字编码形式,用二进制编码的十进制代码。
52.【答案】11101001、10010110、-22
【解析】第一个补码10110111,符号位是1,说明是负数,需要进行转换。-1得到10110110,取反得到原码11001001,转换成十进制数=-73;
第二个补码00110011,符号位是0,说明是正数,正数的补码就是原码本身,因此可以直接将其转换为十进制数=51;
-73+51=-22,采用8位原码表示为10010110,反码=11101001。
53.【答案】3
【解析】本题解析思路是:将补码转换成原码后,转换成十进制。
补码转原码的方式有两种:

  1. 数值位-1,除符号位逐位取反。(也就是原码求补码的逆推过程)
  2. 对补码再求补码。
    54.【答案】0
    【解析】逻辑与/乘运算的原则是“有0出0,全1出1”;逻辑或/加运算的原则是“有1出1,全0出0”;
    55.【答案】-255、+255
    【解析】如图所示。

56.【答案】19.4
【解析】25.25转换成二进制为11001.01。每四个bit对应于一个十六进制数:0001 1001 . 0100。因此结果为19.4

课后练习

一、单选题

1.【答案】C
【解析】将十进制数937.4375与二进制数1010101.11相加,也就是937.4375+85.75=1023.1875,所以其和数是1023.1875. 故选:C。
2.【答案】D
【解析】1KB=1024B。
3.【答案】C
【解析】本题需要注意最后相加的是两个十选制数,而题目给出这两个数的补码形式,则必须将两个数的补码转换成原码后实现加法操作(注意符号位);补码111110010→原码10001110→十进制数-14。补码11010111→原码10101001→十进制数-41。故选C。
4.【答案】A
【解析】B选项错误,并非所有的十进制数都能精确的转换为二进制。
C选项错误,本选项中的存储器特指于内存,内存存在断电易失性。
D选项错误,汉字的机内码是计算机内部汉字表示和存储时所使用的编码,而输入码是用户输入的编码,例如字形、字音、形音、数字。
5.【答案】A
【解析】本题考查存储容量的单位换算。1MB=1024KB=1024×1024B。故选A。
6.【答案】B
【解析】本题考查存储容量的单位换算。1MB=1024KB=1024×1024B。故选B。
7.【答案】C
【解析】本题考查逻辑运算及其优先级:非>与>或。C选项错误,对于A∧BVA∧B,首先计算“V”或运算左右两边的式子,A∧B=10000000,最后进行或运算10000000V10000000=10000000.
8.【答案】B
【解析】本题解题思路为,将各选项二者转换成相同进制进行比较即可。
9.【答案】B
【解析】N位二进制能表示的最大整数是2N-1,N位二进制最多能表示2N个数字。
10.【答案】C
【解析】方法一:将四个选项均转换成二进制,只有C选项不超过8位。方法二:8位二进制数可以表示的范围是0~255,只有C选项不超过此范围。
11.【答案】A
【解析】①二进制的加法为逢二进一;②二进制的加法只有四种算式:0+0=0;0+1=1;1+0=1;1+1=10;③10101010+00101010根据上述运算结果应为:11010100。
12.【答案】B
【解析】基础进制转换。
13.【答案】D
【解析】本题考查存储容量的单位换算。1MB=1024KB=1024×1024B。故选D。
14.【答案】A
【解析】本题考查的是逻辑运算的优先级,非>与>或,有括号先算括号。
本题先计算括号内的逻辑运算:
01010011
∨ 00110110
————————
01110111
再进行与运算:
01110111
∧ 10101100
————————
00100100
15.【答案】A
【解析】在计算机网络中传输二进位信息时,由于是一位一位串行传输的,传输速率大多使用每秒多少比特来度量(称为“比特率”), 经常使用的传输速率单位有b/s、Kb/s、Mb/s、Gb/s。因此本题排除A选项。
16.【答案】C
【解析】A选项错误:采用原码表示时,0有两种表示方式,有“+0”(0000……00)与“-0”(1000……00)之分。B选项错误:采用补码表示时,0只有一种表示方式,就是“0000……00” 。D选项错误:只有负数的转换方式是D选项所述,但是正数的原码、反码和补码皆为原码本身。
17.【答案】A
【解析】N位二进制能表示的最大整数是2N-1,N位二进制最多能表示2N个数字。
18.【答案】B
【解析】采用补码表示时,0只有一种表示方式,就是“0000……00”
19.【答案】A
【解析】逻辑与/乘运算的原则是“有0出0,全1出1”;逻辑或/加运算的原则是“有1出1,全0出0”;
20.【答案】B
【解析】本题解析思路是:将补码转换成原码后,转换成十进制。
补码转原码的方式有两种:

  1. 数值位-1,除符号位逐位取反。(也就是原码求补码的逆推过程)

  2. 对补码再求补码。
    21.【答案】A
    【解析】1KB=1024B。即2^10B。故选A。
    22.【答案】D
    【解析】1字节=8位,采用八位表示无符号整数,可以表示2^8=256个数,范围为0~255
    23.【答案】B
    【解析】-128的原码是:110000000
    将其数值位取反,再+1求补码,过程如下
    110000000
    取反 101111111
    加 1
    ————————
    110000000
    24.【答案】A
    【解析】只需随机举例,同四个选项分别进行运算即可。
    25.【答案】A
    【解析】123(十进制) = 1111011(二进制),采用原码表示时,只需再最高位添加一个1,表示负数即可。因此正确答案为11111011,故选A。
    26.【答案】D
    【解析】算术运算时,需要考虑进位和借位的情况。逻辑运算是按位独立进行的,所以并不存在进位和借位的情况。因此本题D选项错误,二进制无论算术运算还是逻辑运算根本不会出现2。
    27.【答案】A
    【解析】8位补码中,首位是符号位,表示数字的正负,0为正,1为负。题目要求最大,那么先确定这是一个正数,即首位是0,根据补码的定义,我们知道,对于一个正数,它的原码、反码、补码都是相同的。也就是说,它的补码就是该数字的实际大小。显然,将所有的1置高位就可以了,得到结果:0111 1000B,转换成十进制采用完全展开,也就是120。故选A。
    28.【答案】A
    【解析】逻辑运算中的逻辑加(即逻辑或)常用符号“V”或“OR”或“+”来表示。
    29.【答案】B
    【解析】基本的逻辑运算符有“非/NOT”、“与/逻辑乘/AND”、“或/逻辑加/OR”三种。因此本题选择B选项。
    30.【答案】C
    【解析】本题详细过程略,逻辑与运算的原则是“有0出0,全1出1”;逻辑或运算的原则是“有1出1,全0出0”;
    31.【答案】B
    【解析】十进制数241转换成二进制数采用除2取余,逆序排列:
    241÷2=120 余数→1;
    120÷2=60 余数→0;
    60÷2=30 余数→0;
    30÷2=15 余数→0;
    15÷2=7 余数→1;
    7÷2=3 余数→1;
    3÷2=1 余数→1;
    1÷2=0 余数→1。
    余数逆序后为:11110001.故选:B。

    十进制整数转换为二进制整数采用“除2取余,逆序排列“法.具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.
    32.【答案】D
    【解析】分别根据四个选项进行运算,可知本题A和B进行的是逻辑乘运算。
    33.【答案】A
    【解析】基本的进制转换。采用除2逆向取余法。
    34.【答案】C
    【解析】本题考查的是逻辑运算的优先级,非>与>或,有括号先算括号。
    C选项中,先求非A和非B
    非A=01101100,非B=00110011
    35.【答案】D
    【解析】二进制数只有1和0,不可能出现2及其他数字。故选D。
    36.【答案】A
    【解析】计算机内部采用的数制是“二进制”。计算机内部采用二进制进行数据交换和处理;二进位计数制的四则运算规则十分简单,而且四则运算最后都可归结为加法运算和移位,这样,电子计算机中的运算器线路也变得十分简单了。故选A。
    37.【答案】C
    【解析】本题详细过程略,逻辑与运算的原则是“有0出0,全1出1”;逻辑或运算的原则是“有1出1,全0出0”;
    38.【答案】C
    【解析】数字技术的处理对象叫做“比特”或“bit”,比特是数字技术中的最小单位,比特只有两种取值,要么是1,要么是0,它们没有颜色、也没有重量、也不区分大小。计算机中存储1个比特需要使用具有两种稳定状态的物理器件。
    因此本题C选项应该修改为bit,题中的byte指的是字节。
    39.【答案】C
    【解析】bit即比特,也叫做二进位。其取值为1和0。因此本题选择C选项。
    40.【答案】B
    【解析】基本逻辑运算。或运算的原则是:有1出1,全0出0。
    41.【答案】B
    【解析】计算机存储信息的最小单位,称之为位(bit,又称比特)存储器中所包含存储单元的数量称为存储容量,其计量基本单位是字节(Byte。简称B),8个二进制位称为1个字节。故选B。
    42.【答案】B
    【解析】基本进制转换。
    43.【答案】C
    【解析】1GB=210MB=220KB=2^30B,故选C。
    44.【答案】C
    【解析】可以表示的最大的数是2^11-1=2047.
    45.【答案】C
    【解析】设进制为x,将8+5=14整个式子展开,如下:
    8x^0 + 5x^0 = 1x1+4x0
    8+5=x+4
    x=9
    因此本题中进制为9进制。
    注意本题中的15并不能直接使用,由于我们已知9进制的原则是逢9进1,因此需要先对15进行转换,详细过程如下:
    15-6=1×9+5×1-6=14-6=8
    46.【答案】B
    【解析】A选项错误,定点数并不是仅仅只能表示整数,定点数也可以表示小数。浮点数同样可以表示小数和整数;定点数和浮点数只是计算机表示数据的两种不同方式。B选项正确,尾数决定了精度。C选项错误,定点数比浮点数表示的范围小,其原因在于定点数的小数点位置是固定的,因此它只能表示一定范围内的数值。D选项错误,定点数和浮点数均可以采用二进制或十进制来表示。故本题正确答案为B。
    47.【答案】B
    【解析】计算机中的所有信息都是以二进制编码的形式存储在机器内部的。
    48.【答案】B
    【解析】bps,即bit/s,即比特/秒。故正确答案为B选项。
    49.【答案】D
    【解析】本题解析思路是:将补码转换成原码后,转换成十进制。
    补码转原码的方式有两种:

  3. 数值位-1,除符号位逐位取反。(也就是原码求补码的逆推过程)

  4. 对补码再求补码。
    笔者采用第一种方法:10101100-1=10101011;符号位不变,数值位取反得到11010100;第一位1表示负数,其他位转换为十进制为84。因此本题结果为-84。
    50.【答案】D
    【解析】采用12位表示无符号整数,其表示范围是02^12-1(04095)
    51.【答案】D
    【解析】计算机采用二进制的原因有:①技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。②简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。③适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。④易于进行转换,二进制与十进制数易于互相转换。因此本题选择D选项。
    52.【答案】C
    【解析】1字节=8位。
    53.【答案】B
    【解析】(BC)16
    =(1011 1100)2
    =(010 111 100)2 //重新按八进制规则分组,三位一组
    =(274)8
    54.【答案】B
    【解析】本题考查的是逻辑运算的优先级,非>与>或,有括号先算括号。先算“(00110011B)”AND“11111111B”=00110011;再算“(10010110B)”OR“00110011”=10110111。故选B。
    55.【答案】D
    【解析】计算机采用二进制的原因有:①技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。②简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。③适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。④易于进行转换,二进制与十进制数易于互相转换。但1和0构成的信息表达并不简洁,也不符合人们的认知习惯,因此本题选择D选项。
    56.【答案】D
    【解析】本题D选项错误,用二进制补码所能表示的数据范围比原码多一个。参照下表所示。

57.【答案】B
【解析】只需举例代入即可。
58.【答案】B
【解析】本题考查基本的进制转换。777(八进制) = 511(十进制)、3AF(十六进制) = 943(十进制)、11111111(二进制) = 255(十进制)。故本题最大数为B选项。
59.【答案】D
【解析】1TB=210GB=220MB=230KB=240B。故选D。
60.【答案】C
【解析】1GB=210MB=220KB=2^30B,故选C。
61.【答案】B
【解析】本题考查数字媒体技术中字符与文本的相关知识。若PC机内存中相邻2个字节的内容其十六进制形式为74和51,则它们不可能是机内码。汉字机内码的特点是:两个字节的最高位,都是1。而 74、51 的最高位都是0,所以,不可能是机内码。
62.【答案】A
【解析】在计算机网络中传输二进位信息时,由于是一位一位串行传输的,传输速率大多使用每秒多少比特来度量(称为“比特率”), 经常使用的传输速率单位有b/s、Kb/s、Mb/s、Gb/s。其中1Kb/s=1000b/s。故选A。
63.【答案】C
【解析】一个字节为8位,可表示的最大的数是2^8-1=255
64.【答案】D
【解析】根据如下公式。若采用9位来表示,最大表示的数是2^9-1=511,不符合题意。因此必须再增加一位。所以本题选择D选项。
65.【答案】A
【解析】N 位补码中,“1000……00”表示整数-2^(n-1);
66.【答案】A
【解析】任何一个浮点数在计算机内部都能用“指数”(称为“阶码”,是一个整数)和“尾数”(这是一个纯小数)表示,这种表示的方法称为“浮点表示法”。
指数/阶码:整数部分,决定了浮点数的范围;
尾数:小数部分,决定了浮点数的精度;
浮点数的长度可以是32位、64位,位数越多,可表示的实数的范围就越大;尾数位数越多,可表示的实数的精度就越高。
67.【答案】B
【解析】将十进制数12先转换为整数的二进制数,然后将小数部分转换为二进制数。计算过程如下:
整数部分:
12÷2=6…0,
6÷2=3…0,
3÷2=1…1,
1÷2=0…1。
所以12的二进制整数部分为1100。
小数部分:
0.25×2=0.5,取整得到0;
0.5×2=1.0,取整得到1。
所以12.25的二进制小数部分为0.01。
最后,将整数部分和小数部分拼接在一起得到12.25的二进制表示为 1100.01。
68.【答案】D
【解析】0.7187516=11.5,取整数部分11(十六进制形式B)
0.5
16=8.0,取整数部分8
因此(0.71875)D=(0.B8)H
69.【答案】C
【解析】8位二进制补码最高位为符号位,0表示正数,1表示负数。对于8位二进制数的最高位来说,如果为0,则表示数值范围为0~127;如果为1,则需要采用补码的方式来表示负数。在原码的基础上,对于负数,将符号位不变,其余各位全部取反,然后对整个数加1,得到对应的补码。补码到原码的转换,也就是将补码减1,然后各位取反,得到原码。因为要表示-128,也就是最大的负数,因此它的补码为1000 0000B。
70.【答案】B
【解析】基本进制转换。采用按权展开法。
71.【答案】D
【解析】一位十六进制数对应于4位二进制。本题32位二进制,就对应于32/4=8位十六进制数。所以本题选择D选项。
72.【答案】B
【解析】一个比特只能表示数字1或数字0
73.【答案】D
【解析】算数运算原则为:
0+0=0,
0+1=1,
1+1=10(向高位进一)
74.【答案】A
【解析】相当于左移2位,是原来的2的2次方,即4倍。当然可以采用举例法来解题。原数为111(7D),加三个零后变成11100(28D),翻了4倍。
75.【答案】A
【解析】字节是计算机信息技术用于计量存储容量的一种计量单位,也表示一些计算机编程语言中的数据类型和语言字符。在计算机中8位作为一个字节。它是构成信息的一个小单位,并作为一个整体来参加操作.在微型计算机中,通常用多少字节来表示存储器的存储容量。
76.【答案】C
【解析】计算机中带符号整数都采用补码的方式表示。
77.【答案】A
【解析】答题技巧“基本单位”用字节,“最小单位”用bit。
78.【答案】C
【解析】设进制为x,将3×3=12整个式子按权展开,如下:
3x^0 × 3x^0 = 1x1+2x0
9=x+2
x=7

因此本题中进制为7进制。
5+6在十进制情况下结果为11,将其转换为7进制即可。
7进制说明逢7进1,11中包含一个7,进一位,余数为4。因此结果为14。
79.【答案】A
【解析】应该采用与运算。即选A.AND 将该字节数据与3FH相与即可。
80.【答案】A
【解析】基本进制转换。
81.【答案】B
【解析】基本进制转换。
82.【答案】D
【解析】计算机中带符号的数值,最高位采用1表示负数,采用0表示正数。故选D。
83.【答案】D
【解析】64位机即字长为64,一次可进行64位的计算。故选D。
84.【答案】D
【解析】计算机采用二进制的原因有:①技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。②简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。③适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。④易于进行转换,二进制与十进制数易于互相转换。提高运算精度与采用何种进制无关,故选D。
85.【答案】A
【解析】基本进制转换。
86.【答案】D
【解析】基本逻辑运算。或运算的原则是:有1出1,全0出0.
87.【答案】D
【解析】计算机采用二进制的原因有:①技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。②简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。③适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。④易于进行转换,二进制与十进制数易于互相转换等。本题ABC均正确,故选D。
88.【答案】D
【解析】8位整数补码的表示范围为-128~+127。[-128]补=10000000,[127]补=01111111。对于选项D,很明显128超过了8位整数的表示范围。
89.【答案】B
【解析】本题考查存储容量的单位换算。1MB=210KB=210B。
90.【答案】B
【解析】本题只需将各选项转换为相同的进制进行对比即可。
91.【答案】B
【解析】设进制为x,将5×8=28整个式子按权展开,如下:
5x^0 × 8x^0 = 2x1+8x0
40=2x+8
x=16
因此本题中进制为16进制。
6×7=(42)D,将其转换为十六进制即为2A
92.【答案】D
【解析】十进制情况下,4×5=20;这里等于14,1×m+4=20,m=16,说明是16进制;而十进制中5×7=35;用16进制表示就是35=16×2+3=23。因此,此处5×7=23。
93.【答案】B
【解析】所有十进制整数都能精确的转换为二进制整数。 但, 不是所有十进制小数都能精确的转换,因为有可能在转换的过程中,出现无限循环。
94.【答案】B
【解析】本题分别将BCD选项转换为十进制进行比较。
B:11H=17D
C:11Q=9D
D:11B=3D
因此本体B选项最大。
95.【答案】D
【解析】bps,即bit/s,即比特/秒。故正确答案为D选项。
96.【答案】A
【解析】十进制数89.625分成两部分来转换,其中正数部分的89转换为二进制采用除2取余,逆序排列方法:
89÷2=44 余数→1;
44÷2=22 余数→0;
22÷2=11 余数→0;
11÷2=5 余数→1;
5÷2=2 余数→1;
2÷2=1 余数→0;
1÷2=0 余数→1。
余数逆序后为:1011001.

小数部分0.625转换为二进制采用乘2取整,顺序排列方法:0.6252=1.25═取出整数部分1;
0.25
2=0.5═取出整数部分0;
0.5*2=1═取出整数部分1.
小数部分顺序排列后为:101.
所以十进制的89.625对应的二进制是1011001.101. 故选:A。
十进制整数转换为二进制整数采用“除2取余,逆序排列“法.具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.十进制小数转换成二进制小数采用“乘2取整,顺序排列“法.具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位.或者达到所要求的精度为止.
97.【答案】B
【解析】N位二进制能表示的最大整数是2N-1,N位二进制最多能表示2N个数字。因此6位,可以表示的最大数是2^6-1=64-1=63。
98.【答案】C
【解析】任何进位计数制都有的两要素是数码的个数和进位基数,即权值和基数。
99.【答案】D
【解析】已知补码,求原码,逆推即可:先减1,再将符号位取反。
10011000
减 1
————————
10010111
取反 11101000
100.【答案】C
【解析】基本进制转换。
101.【答案】D
【解析】相当于左移3位,是原来的2的3次方,即8倍。当然可以采用举例法来解题。原数为111(7D),加三个零后变成111000(56D),翻了八倍。
102.【答案】C
【解析】八进制用字母O或字母Q,二进制加B,十六进制加H,十进制可以加D,也可以不加。故本题选C。
103.【答案】A
【解析】十进制整数转换为二进制整数采用“除2取余,逆序排列“法.具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.十进制小数转换成二进制小数采用“乘2取整,顺序排列“法.具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位.或者达到所要求的精度为止.
104.【答案】B
【解析】本题考的是容量单位的换算,1Byte=8bit,因此8B=64bit。所以本题选择B选项。
105.【答案】D
【解析】原码:10111001
反码:11000110
补码:11000111
106.【答案】C
【解析】1TB=1024GB。本题选择C选项。
107.【答案】D
【解析】5MB=5×1024KB=5×1024×1024B。
108.【答案】B
【解析】1-1=0,1-0=1,0-0=0,0-1=-1,也就是当两个相加的二进制位中同为0或1时,相减的结果为0;如果被减数的二进制位为1,而减数的二进制位为0,则相减的结果仍为1;而如果被减数的二进制位为0,而减数的二进制位为1,则需要向高位借1,但此时是借1当2,与十进制中的借1当10道理一样。
109.【答案】B
【解析】最大的10位无符号二进制整数是:1111111111,将其转换为八进制即1777。故选B。
110.【答案】D
【解析】数字技术的处理对象叫做“比特”或“bit”,比特是数字技术中的最小单位,比特只有两种取值,要么是1,要么是0,它们没有颜色、也没有重量、也不区分大小。计算机中存储1个比特需要使用具有两种稳定状态的物理器件。因此本题D选项错误。
111.【答案】A
【解析】本题考查存储容量的单位换算。1MB=1024KB
112.【答案】C
【解析】本题详细过程略,逻辑与运算的原则是“有0出0,全1出1”;逻辑或运算的原则是“有1出1,全0出0”;
113.【答案】B
【解析】相当于左移1位,是原来的2的1次方,即2倍。当然可以采用举例法来解题。原数为111(7D),加三个零后变成1110(14D),翻了2倍。
114.【答案】C
【解析】由于“变号操作”需要将符号位求反,因此01101101进行变号操作后符号位必为1,因此排除A选项。求一个负整数的补码的方法为:先将该数原码求反,然后加1。则1101101求反后为0010010,加1后得0010011,加上符号位为10010011,即C选项正确。
115.【答案】D
【解析】方法一:将四个选项均转换成二进制,只有C选项不超过8位。方法二:8位二进制数可以表示的范围是0~255,只有D选项不超过此范围。
116.【答案】D
【解析】数字技术的处理对象叫做“比特”或“bit”,比特是数字技术中的最小单位,比特只有两种取值,要么是1,要么是0,它们没有颜色、也没有重量、也不区分大小。因此本题选择D选项。
117.【答案】C
【解析】本题详细过程略,逻辑与运算的原则是“有0出0,全1出1”;逻辑或运算的原则是“有1出1,全0出0”;
118.【答案】C
【解析】基本进制转换。
119.【答案】A
【解析】分别将ACD选项转换为十进制进行对比:
A:10110110B = 182D
C:251Q = 169D
D:ADH = 173D
因此本题A选项最大。
120.【答案】D
【解析】整数除以16取余,直到商为0为止,然后从最后一个余数读到第一个,小数点后的部分,要乘以16,依次写出来就可以了。则十进制数213.75转换成十六进制的过程如下:

整数部分:
213÷16=13……5
13÷16=0……13(D)

小数部分:
0.75×16=12(C)

所以213.75(10)=D5.C
121.【答案】A
【解析】计算机内部是一个二进制世界,它只认识1和0,因此计算机能够直接识别的代码是二进制。
122.【答案】C
【解析】可以将本题ABC选项均转换为十进制,进行对比:
A:10100101B = 165D
B:59H = 89D
C:76Q = 62D
因此本题C选项最小。
123.【答案】B
【解析】计算机中存储1个比特需要使用具有两种稳定状态的物理器件。例如:触发器、电容器、磁性介质的磁化状态,以及光盘盘面上螺旋光道。因此本题选择B选项。
124.【答案】D
【解析】A选项错误:符号位用1来表示负数
B选项、C选项错误:只有正数的原码、反码和补码是相同的。负数是不同的。
125.【答案】D
【解析】算术运算时,需要考虑进位和借位的情况。逻辑运算是按位独立进行的,所以并不存在进位和借位的情况。本题ABC均属于逻辑运算,只有D选项属于算数运算,可能存在进位或借位的情况,故选D。
126.【答案】B
【解析】答题技巧“基本单位”用字节,“最小单位”用bit。计算机存储信息的最小单位,称之为位(bit,又称比特)。存储器中所包含存储单元的数量称为存储容量,其计量基本单位是字节(Byte。简称B)。
127.【答案】B
【解析】1字节=8位,采用八位表示无符号整数,可以表示28=256个数,范围为0~255,最大表示的数为28-1=255。
128.【答案】A
【解析】设进制为x,将45=14整个式子按权展开,如下:
4x^0 × 5x^0 = 1x1+4x0
20=x+4
x=16
因此本题中进制为16进制。
3x7的结果为十进制数21,将其转换为16进制即为15
129.【答案】C
【解析】两个条件同时满足的情况下结论才能成立,对应的逻辑运算是“与运算/逻辑乘”,原则是全1才出1,但凡有一个0,那么就出0.
130.【答案】B
【解析】计算机存储信息的最小单位,称之为位(bit,又称比特)。存储器中所包含存储单元的数量称为存储容量,其计量基本单位是字节(Byte。简称B),8个二进制位称为1个字节。故选B。
131.【答案】B
【解析】已知[2X]补=90H=10010000;
减1,数值位取反,逆推可得[2X]原=11110000;
由此可知2X=-112,则X=-56
132.【答案】B
【解析】十进制算式7
64+4*8+4的运算结果是484,转换为二进制数是:
484÷2=242 余数→0;
242÷2=121 余数→0;
121÷2=60 余数→1;
60÷2=30 余数→0;
30÷2=15 余数→0;
15÷2=7 余数→1;
7÷2=3 余数→1;
3÷2=1 余数→1;
1÷2=0 余数→1.
余数逆序后为:111100100

十进制整数转换为二进制整数采用“除2取余,逆序排列“法.具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.
133.【答案】B
【解析】基本进制转换。
134.【答案】A
【解析】本题考查存储容量的单位换算。1MB=1024KB=1024×1024B。
135.【答案】D
【解析】数字技术的处理对象叫做“比特”或“bit”,比特是数字技术中的最小单位,比特只有两种取值,要么是1,要么是0,它们没有颜色、也没有重量、也不区分大小。计算机中存储1个比特需要使用具有两种稳定状态的物理器件。例如:触发器、电容器、磁性介质的磁化状态,以及光盘盘面上螺旋光道。因此本题选择D选项。
136.【答案】C
【解析】计算机采用二进制的原因有:
1.技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。
2.简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。
3.适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。
4.易于进行转换,二进制与十进制数易于互相转换。
但1和0构成的信息并不适合于人们阅读,因此本题选择C选项。
137.【答案】C
【解析】定点数并不是仅仅只能表示整数,定点数也可以表示小数。 浮点数同样可以表示小数和整数;定点数和浮点数只是计算机表示数据的两种不同方式
138.【答案】C
【解析】三个比特的编码可以表示2^3=8种的不同状态。分别是000、001、010、011、100、101、110、111。
139.【答案】D
【解析】计算机采用二进制的原因有:①技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。②简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。③适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。④易于进行转换,二进制与十进制数易于互相转换。但1和0构成的信息表达并不简洁,也不符合人们的认知习惯,因此本题选择D选项。
140.【答案】D
【解析】A与B进行算数加的结果为11;进行逻辑加的结果也是11。故选D。
141.【答案】C
【解析】50bit÷(10000000×8)=6.25×10^-7。
142.【答案】B
【解析】“浮点数”由两部分组成,即尾数和阶码。在浮点表示方法中,小数点的位置是浮动的,阶码可取不同的数值。为了便于计算机中小数点的表示,规定将浮点数写成规格化的形式,即尾数的绝对值大于等于0.1并且小于1,从而唯一规定了小数点的位置。尾数的长度将影响数的精度,其符号将决定数的符号。浮点数的阶码相当于数学中的指数,其大小将决定数的表示范围。一个浮点数在计算机中的表现形式如下:尾数符号阶码尾数有效值。当长度相同的两种浮点数,阶码长、尾数短的当然表示数的范围大,精度低。而尾数长、阶码短的表示数的范围小,精度高。所以选项B是正确的。
143.【答案】B
【解析】分别将BCD选项转换成十进制进行比较。
B:1001101.01B=77.25D
C:115.1Q=77.125D
D:4C.4H=76.25D
144.【答案】A
【解析】计算机中英文字母采用ASCII码存储,每一个ASCII字符存储占用1字节。因此字母B在计算机中占用1B,即可8bit。故选A。
145.【答案】D
【解析】1、算数运算原则为:0+0=0,0+1=1,1+1=10(向高位进一)原则是:逢二进一
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
———————
0 1 1 1 1 0 0 0 (算数加的运算结果,转换为八进制为170)

2、逻辑加法通常用符号“+”或“∨”来表示。原则如下:
0+0=0, 0∨0=0
0+1=1, 0∨1=1
1+0=1, 1∨0=1
1+1=1, 1∨1=1

0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
———————
0 1 1 0 1 1 1 1(逻辑加的运算结果,转换为八进制为157)

二、多选题

146.【答案】ABC
【解析】算术运算时,需要考虑进位和借位的情况,可能会有溢出。逻辑运算是按位独立进行的,所以并不存在进位和借位的情况。因此本题选择ABC。
147.【答案】BD
【解析】1MB=1024KB=1024*1024B。因此本题正确答案为BD。
148.【答案】BD
【解析】任何一个浮点数在计算机内部都能用“指数”(称为“阶码”,是一个整数)和“尾数”(这是一个纯小数)表示,这种表示的方法称为“浮点表示法”。
指数/阶码:整数部分,决定了浮点数的范围;
尾数:小数部分,决定了浮点数的精度;
浮点数的长度可以是32位、64位,位数越多,可表示的实数的范围就越大;尾数位数越多,可表示的实数的精度就越高。
149.【答案】AC
【解析】任何进位计数制都有的两要素是位权和基数。
基数是指数制允许使用的基本数字符号的个数。
一个数字符号所表示的数值就等于该数字乘以一个与它所在数位有关的常数,这个常数称为位权,简称权。
150.【答案】ABCD
【解析】计算机中存储1个比特需要使用具有两种稳定状态的物理器件。例如:触发器、电容器、磁性介质的磁化状态,以及光盘盘面上螺旋光道。因此本题选择ABCD。
151.【答案】CD
【解析】任何进位计数制都有的两要素是位权和基数。
基数是指数制允许使用的基本数字符号的个数。
二进制的基数就是2,十进制的基数就是10。所以CD选项正确。
AB选项均错误:基数只可能是正整数。
152.【答案】ABCD
【解析】基本的逻辑运算符有“非/NOT”、“与/逻辑乘/AND”、“或/逻辑加/OR”三种。还有扩充的逻辑运算,如同或和异或。
因此本题ABCD均正确。
153.【答案】AB
【解析】A选项错误:采用原码表示时,0有两种表示方式,有“+0”(0000……00)与“-0”(1000……00)之分。B选项错误:采用补码表示时,0只有一种表示方式,就是“0000……00” 。因此本题选择A和B。
154.【答案】ABD
【解析】常用的逻辑运算符是非NOT、与AND、或OR。没有NO的写法,故本题选择ABD选项。
155.【答案】ABD
【解析】数字技术的处理对象叫做“比特”或“bit”,比特是数字技术中的最小单位,比特只有两种取值,要么是1,要么是0,它们没有颜色、也没有重量、也不区分大小。计算机中存储1个比特需要使用具有两种稳定状态的物理器件。因此本题C选项错误。故选ABD。
156.【答案】ABCD
【解析】计算机中存储1个比特需要使用具有两种稳定状态的物理器件。例如:触发器、电容器、磁性介质的磁化状态,以及光盘盘面上螺旋光道。因此本题选择ABCD选项。
157.【答案】AB
【解析】A选项错误,负数的补码其符号位是“1”;B选项错误,负数的补码是该数绝对值的反码+1,即“除符号位,数值位取反后,再加1”。故选AB。

三、判断题

158.【答案】√
【解析】数字技术的处理对象叫做“比特”或“bit”,比特只有两种取值,要么是1,要么是0,它们不区分大小。比特是数字技术中的最小单位。
159.【答案】√
【勘误】题目修改为“下述公式是不正确的:1MB=1024KB,1Mbps=1024Kbps。”
【解析】传输速率之间的进率为1000。应修改为1Mbps=1000Kbps。
160.【答案】√
【解析】N 位原码表示整数 0 有“+0”(0000……00)与“-0”(1000……00)之分。N 位补码中,“1000……00”表示整数-2^(n-1) ;“0000……00” 表示整数 0。
161.【答案】×
【解析】所有十进制整数都能精确的转换为二进制整数。 但, 不是所有十进制小数都能精确的转换,因为有可能在转换的过程中,出现无限循环。
162.【答案】×
【解析】[-75]原=11001011;[-75]反=10110100;[-75]补=10110101。
163.【答案】√
【解析】[-75]原=11001011;[-75]反=10110100;[-75]补=10110101。因此本题正确。
164.【答案】√
【解析】1.整数(定点数)的编码方法:原码、补码、反码;在计算机内采用“补码”的形式表示!
2.对于正数 X:补码、原码、反码相同。
3.对于负数 X:X 的原码除符号外逐位取反,得到 X 的反码;X 的反码加一,得到 X 补码。
165.【答案】×
【解析】此类整数既可表示正整数,又可表示负整数。带符号的整数必须使用一个二进位作为符号位,一般总是最高位(最左边的一位)。
“0”表示“+”(正数);
“1”表示“-”(负数);
其余各位表示数值的大小。
166.【答案】√
【解析】本题正确,每个西文字通常用8个比特表示,每个汉字至少使用16个比特才能表示,而图像和声音需要更多的比特表示。
167.【答案】√
【解析】本题正确,除了电压的高低、还可以利用充电放电状态、磁性介质的磁化状态等,来表示1和0。
168.【答案】×
【解析】33(十进制) = 100001(二进制)。因此-33的八位原码表示为10100001。符号位不变,数值位取反后为11011110,再+1得到补码11011111。故本题错误。
169.【答案】√
【解析】计算机中不带符号的整数一定是正整数!
170.【答案】√
【解析】算术运算时,需要考虑进位和借位的情况。逻辑运算是按位独立进行的,所以并不存在进位和借位的情况。
171.【答案】√
【解析】在数字通信中,信息的传输通过比特的传输来完成。需要注意的是,在计算机网络中传输二进位信息时,由于是一位一位串行传输的,传输速率大多使用每秒多少比特来度量(称为“比特率”), 经常使用的传输速率单位有:
“比特/秒”(b/s),也称“bps”。如:9600bps(9600b/s)
“千比特/秒”(kb/s),1kb/s = 103 比特/秒 = 1000 b/s
“兆比特/秒”(Mb/s),1Mb/s = 106 比特/秒 = 1000 kb/s
“吉比特/秒”(Gb/s),1Gb/s = 109 比特/秒 = 1000 Mb/s
172.【答案】×
【解析】n位补码的表示范围可以比n为原码的表示范围多一个。因此补码对于0的表示
173.【答案】×
【解析】算术运算时,需要考虑进位和借位的情况。逻辑运算是按位独立进行的,所以并不存在进位和借位的情况。因此本题错误。
174.【答案】×
【解析】“字节”应修改为“比特”
175.【答案】×
【解析】比特是组成数字信息的最小单位,只有0和1两个符号,即可以表示数值和文字也可以表示图象或声音。故本题错误。
176.【答案】√
【解析】正数的原码、反码、补码都是原码本身!
177.【答案】×
【解析】在数字通信中,信息的传输通过比特的传输来完成。需要注意的是,在计算机网络中传输二进位信息时,由于是一位一位串行传输的,传输速率大多使用每秒多少比特来度量(称为“比特率”), 经常使用的传输速率单位有:
“比特/秒”(b/s),也称“bps”。如:9600bps(9600b/s)
“千比特/秒”(kb/s),1kb/s = 103 比特/秒 = 1000 b/s
“兆比特/秒”(Mb/s),1Mb/s = 106 比特/秒 = 1000 kb/s
“吉比特/秒”(Gb/s),1Gb/s = 109 比特/秒 = 1000 Mb/s

四、填空题

178.【答案】1011001.101
【解析】十进制数89.625分成两部分来转换,其中正数部分的89转换为二进制采用除2取余,逆序排列方法:
89÷2=44 余数→1;
44÷2=22 余数→0;
22÷2=11 余数→0;
11÷2=5 余数→1;
5÷2=2 余数→1;
2÷2=1 余数→0;
1÷2=0 余数→1。
余数逆序后为:1011001.

小数部分0.625转换为二进制采用乘2取整,顺序排列方法:0.6252=1.25═取出整数部分1;
0.25
2=0.5═取出整数部分0;
0.5*2=1═取出整数部分1.
小数部分顺序排列后为:101.
所以十进制的89.625对应的二进制是1011001.101. 故选:A。
十进制整数转换为二进制整数采用“除2取余,逆序排列”法.具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.十进制小数转换成二进制小数采用“乘2取整,顺序排列”法.具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位.或者达到所要求的精度为止.
179.【答案】0~255
【解析】用8个二进位表示无符号整数,最小是00000000,也就是0,最大是11111111,即0~255。
180.【答案】-121~120
【解析】1.最小的情况:
既然最小,最高位符号位必然为1,表示负数。那么还剩下3个1和4个0。
由于补码到原码的转换过程中,有一个取反的过程,对于负数而言,补码表示时,其数值为应该保持最小,这样取反之后,数值位也就越大,构成的负数也就越小。
即10000111;对其-1,得到10000110,再取反11111001,也就是-121
2.最大的情况:
最大即为正数,符号位为0,数值位拼凑为最大值即可。
即01111000,转换为十进制为120
181.【答案】7774Q
【解析】111111111100000(二进制) = 32736(十进制)。 32736÷8=4092。可以将其先转换为二进制后,再三位三位对照转换成十进制。也可以采用除8取余法。得到八进制结果7774Q。
182.【答案】-127
【解析】如图所示

183.【答案】-127
【解析】本题解析思路是:将补码转换成原码后,转换成十进制。
补码转原码的方式有两种:

  1. 数值位-1,除符号位逐位取反。(也就是原码求补码的逆推过程)
  2. 对补码再求补码。

以方法1为例:10000001,减-1后得到10000000,取反后得到11111111,转换为十进制即为-127
184.【答案】由内向外
【解析】CD-ROM光盘上记录信息的介质是一条由内向外的螺旋光道,利用光道上的凹坑内外平坦处和边缘部分表示并存储比特。凹坑边缘表示1,凹坑内外平坦处表示0。
185.【答案】比特
【解析】数字技术的处理对象叫做“比特”或“bit”,比特是数字技术中的最小单位,比特只有两种取值,要么是1,要么是0,它们没有颜色、也没有重量、也不区分大小。计算机中存储1个比特需要使用具有两种稳定状态的物理器件。
186.【答案】8
【解析】相当于左移3位,是原来的2的3次方,即8倍。当然可以采用举例法来解题。原数为111(7D),加三个零后变成111000(56D),翻了八倍。
187.【答案】-121
【解析】1.最小的情况:
既然最小,最高位符号位必然为1,表示负数。那么还剩下3个1和4个0。
由于补码到原码的转换过程中,有一个取反的过程,对于负数而言,补码表示时,其数值为应该保持最小,这样取反之后,数值位也就越大,构成的负数也就越小。
即10000111;对其-1,得到10000110,再取反11111001,也就是-121

2.最大的情况:
最大即为正数,符号位为0,数值位拼凑为最大值即可。
即01111000,转换为十进制为120
188.【答案】1111
【解析】十六进制F,对应于二进制数1111
189.【答案】11010100
【解析】先求得-44的8位二进制原码:10101100,最高位是符号位,负数为1,低7位是绝对值44d=101100b,补齐7位是0101100.然后对原码的绝对值部分求反加1得:1010100,补上符号位(最高位)1得:11010100,这就是-44的8位二进制补码。
190.【答案】1
【解析】采用补码表示时,0只有一种表示方式,就是“0000……00”
191.【答案】1
【解析】逻辑加运算规则,有1出1,全0出0。因此1+1=1。
192.【答案】10010100
【解析】基础进制转换。
193.【答案】112
【解析】设进制为x,将3×12=40整个式子按权展开,如下:
3x^0 × (1x1+2x0) = 4x1+0x0
3 × (x+2)= 4x
3x+6=4x
x=6

因此本题中进制为6进制。
注意本题中的15并不能直接使用,由于我们已知6进制的原则是逢6进1,因此需要先对15进行转换,详细过程如下:
4×15=4×(1×61+5×60)=44
最后需要注意的是!这个44是十进制结果(按权展开得到的十进制数),要转换为6进制,所以最终答案为112
194.【答案】不同时为1或0
【解析】异或运算的原则是:不同为1,相同为0。因此本题中,只要A和B的值不同时为1或0(也就是不相同)时,结果为1。
195.【答案】0
【解析】逻辑乘,也就是与运算。原则是:有0出0,全1出1。故本题结果为0。
196.【答案】15
【解析】按十进制4×5=20,按某进制时其为17,那么在这种进制下,其倒数第二位所代表数为20-7=13,我们可暂称其为13进制。按十进制3×6=18,在某进制下,其高位1代表13,那么低位为18-13=5。所以,这种进制下3×6=15。
197.【答案】-128~+127
【解析】如图所示。

198.【答案】-125
【解析】既然最小,最高位符号位必然为1,表示负数。那么还剩下2个1和5个0。
由于补码到原码的转换过程中,有一个取反的过程,对于负数而言,补码表示时,其数值为应该保持最小,这样取反之后,数值位也就越大,构成的负数也就越小。
即10000011;对其-1,得到10000010,再取反11111101,也就是-125
199.【答案】1023
【解析】如图所示。

200.【答案】1024
【解析】1GB=1024MB
201.【答案】0~240-1
【解析】一位十六进制数对应于4位二进制数。因此,10位十六进制数,则对应40位二进制。采用40位表示无符号整数时,其范围是0~2^40-1
202.【答案】38
【解析】设进制为x,将3×5=13整个式子按权展开,如下:
3x^0 × 5x^0 = 1x1+3x0
15=x+3
x=12
因此本题中进制为12进制。
12进制的32,将其按权展开即可得到对应的十进制数。
3×12^1 + 2×12^0 = 36+2=38
203.【答案】01111111
【解析】注意题目中说明“带符号整数”,因此首位作为符号位,最大的情况为整数,即为0。剩余7位均是数值位,均置为1即为最大的情况。因此本题结果为01111111。
204.【答案】1111111101111111
【解析】129的二进制是10000001;所以-129的16位原码=1000000010000001;符号位不变,数值位取反,再+1,得到-129的补码1111111101111111。
205.【答案】255
【解析】N位二进制能表示的最大整数是2N-1,N位二进制最多能表示2N个数字。故本题答案为2^8-1=255.
206.【答案】1
【解析】在计算机CPU中,使用了一种称为触发器的双稳态电路来存储比特,1个触发器可以存储1个比特。
207.【答案】小于
【解析】在购买硬盘之后,细心的人会发现,在操作系统当中硬盘的容量与官方标称的容量不符,都要少于标称容量,容量越大则这个差异越大。标称40gb的硬盘,在操作系统中显示只有38gb;80gb的硬盘只有75gb;而120gb的硬盘则只有114gb。这并不是厂商或经销商以次充好欺骗消费者,而是硬盘厂商对容量的计算方法和操作系统的计算方法有不同而造成的,不同的单位转换关系造成的。
众所周知,在计算机中是采用二进制,这样造成在操作系统中对容量的计算是以每1024为一进制的,每1024字节为1kb,每1024kb为1mb,每1024mb为1gb;而硬盘厂商在计算容量方面是以每1000为一进制的,每1000字节为1kb,每1000kb为1mb,每1000mb为1gb,这二者进制上的差异造成了硬盘容量“缩水”。
208.【答案】加/或
【解析】A与B进行或运算,按位取或,从右往左第一位 0或0结果为0,第二位0或1结果为1,第三位1或0结果为1,第四位1或0为1,因此,最终结果为1110.其结果与算术加运算结果相同。
209.【答案】1
【解析】带符号的整数必须使用一个二进位作为符号位,一般总是最高位(最左边的一位)。
“0”表示“+”(正数)
“1”表示“-”(负数)
其余各位表示数值的大小。
210.【答案】1000
【解析】在数字通信中,信息的传输通过比特的传输来完成。需要注意的是,在计算机网络中传输二进位信息时,由于是一位一位串行传输的,传输速率大多使用每秒多少比特来度量(称为“比特率”), 经常使用的传输速率单位有:
“比特/秒”(b/s),也称“bps”。如:9600bps(9600b/s)
“千比特/秒”(kb/s),1kb/s = 103 比特/秒 = 1000 b/s
“兆比特/秒”(Mb/s),1Mb/s = 106 比特/秒 = 1000 kb/s
“吉比特/秒”(Gb/s),1Gb/s = 109 比特/秒 = 1000 Mb/s
211.【答案】1024
【解析】1GB=1024MB
212.【答案】-32768
【解析】16位二进制补码可表示的数比原码多一个,这个补码是:1000 0000 0000 0000B,即-32768。
213.【答案】A5
【解析】十进制数 165转换为二进制采用除2取余,逆序排列法.具体如下:
165÷2=82 余数→1;
82÷2=41 余数→0;
41÷2=20 余数→1;
20÷2=10 余数→0;
10÷2=5 余数→0;
5÷2=2 余数→1;
2÷2=1 余数→0;
1÷2=0 余数→1.
余数逆序后为:10100101.
二进制的10100101转换为十六进制,每四位为一组,也就是1010,0101,对应的十六进制是A5.
故答案为:A5.
214.【答案】0-2^40-1
【解析】一个十六进制数对应于4个二进位。那么10个十六进制数,对应的二进制位数则是40位。N位二进制能表示的最大整数是2N-1,N位二进制最多能表示2N个数字。故本题答案为0~2^40-1。
215.【答案】65520
【解析】基本进制转换,任何进制采用按权展开式,都能转换为十进制数。
216.【答案】59
【解析】ASCII字符集中,字母按照顺序排列,B是66,依次类推累加,Y即59。
217.【答案】0~2n-1
【解析】N位二进制能表示的最大整数是2N-1,N位二进制最多能表示2N个数字。
218.【答案】0-255
【解析】N位二进制能表示的最大整数是2N-1,N位二进制最多能表示2N个数字。
219.【答案】-7
【解析】最小的情况:既然最小,最高位符号位必然为1,表示负数。那么还剩下1个1和2个0。由于补码到原码的转换过程中,有一个取反的过程,对于负数而言,补码表示时,其数值为应该保持最小,这样取反之后,数值位也就越大,构成的负数也就越小。即1001;对其-1,得到1000,再取反1111,也就是-7。
220.【答案】-53
【解析】本题解析思路是:将补码转换成原码后,转换成十进制。
补码转原码的方式有两种:

  1. 数值位-1,除符号位逐位取反。(也就是原码求补码的逆推过程)
  2. 对补码再求补码。

如果补码的符号位为“0”,表示是一个正数,其原码就是补码。因此Y的原码为00110011。对应的十进制数值是25+24+21+20=51。

如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。因此X的原码为11101000,对应的十进制数值是-(26+25+2^3)=-104。
【X】+【Y】的原码对应的十进制数值是51+(-104)=-53。
221.【答案】65520
【解析】本题只需将FFF0按权展开,即可求得对应的十进制数。
222.【答案】100010.101、100111.101、4A.4
【解析】常规进制运算。
223.【答案】-53
【解析】本题解析思路是:将补码转换成原码后,转换成十进制。补码转原码的方式有两种:①数值位-1,除符号位逐位取反。(也就是原码求补码的逆推过程)②对补码再求补码。
224.【答案】取反
【解析】基本的逻辑运算符有“非/NOT”、“与/逻辑乘/AND”、“或/逻辑加/OR”三种。
225.【答案】-1
【解析】本题就是求出原码。将补码转换成原码后,转换成十进制。补码转原码的方式有两种:①数值位-1,除符号位逐位取反。(也就是原码求补码的逆推过程)②对补码再求补码。以第二种方法为例,111111,符号位不变,数值位取反后,得到100000,再+1,即可得到原码=100001,即-1。
226.【答案】1000
【解析】在数字通信中,信息的传输通过比特的传输来完成。需要注意的是,在计算机网络中传输二进位信息时,由于是一位一位串行传输的,传输速率大多使用每秒多少比特来度量(称为“比特率”), 经常使用的传输速率单位有:
“比特/秒”(b/s),也称“bps”。如:9600bps(9600b/s)
“千比特/秒”(kb/s),1kb/s = 103 比特/秒 = 1000 b/s
“兆比特/秒”(Mb/s),1Mb/s = 106 比特/秒 = 1000 kb/s
“吉比特/秒”(Gb/s),1Gb/s = 109 比特/秒 = 1000 Mb/s
227.【答案】1000
【解析】内存单位换算默认使用1024,特意声明“外存”时,使用1000。
228.【答案】11010100
【解析】先求得-44的8位二进制原码:10101100,最高位是符号位,负数为1,低7位是绝对值44d=101100b,补齐7位是0101100.然后对原码的绝对值部分求反加1得:1010100,补上符号位(最高位)1得:11010100,这就是-44的8位二进制补码.
229.【答案】-1
【解析】FFFF=1111 1111 1111 1111,对补码再求补码,可得到原码本身。
230.【答案】64.1
【解析】十进数52.125的八进制数表示为110100.001。每三个bit对应于一个八进制数:110 100 . 001。
因此结果为64.1。
231.【答案】120
【解析】①最小的情况:既然最小,最高位符号位必然为1,表示负数。那么还剩下3个1和4个0。由于补码到原码的转换过程中,有一个取反的过程,对于负数而言,补码表示时,其数值为应该保持最小,这样取反之后,数值位也就越大,构成的负数也就越小。即10000111;对其-1,得到10000110,再取反11111001,也就是-121。②最大的情况:最大即为正数,符号位为0,数值位拼凑为最大值即可。即01111000,转换为十进制为120。
232.【答案】-2(m-1)~-2(m-1)-1
【解析】如图所示。

233.【答案】11100001
【解析】31转换为二进制为11111,符号位为1表示负数。
由于题目要求8位,在数值位和符号位中间填充0,凑满8位,得到[-31]的八位原码=10011111,取反得到11100000,+1后即可得到[-31]的补码:11100001
234.【答案】二进制
【解析】计算机只认识1和0,所有的数据在计算机中都是以二进制的1和0的形式存储或传递的。
235.【答案】-1024
【解析】如图所示。

236.【答案】补
【解析】原码:10111001。反码:11000110。补码:11000111
237.【答案】15
【解析】设进制为x,将4×5=17整个式子按权展开,如下:
4x^0 × 5x^0 = 1x^1 + 7x^0
20=x+7
x=13
因此本题中进制为13进制;
3×6原本等于十进制数18,将18转换为13进制即可,18中包含一个13,因此进1位,余数为5。因此结果为15.
238.【答案】11000000.10001100…(无限循环,适当保留5位即可)
【解析】常规进制转换。
239.【答案】DC
【解析】常规进制转换。
240.【答案】0.1000010…(无限循环,适当保留5位即可)
【解析】常规进制转换。
241.【答案】124424
【解析】常规进制转换。
242.【答案】FA
【解析】常规进制转换。
243.【答案】195
【解析】常规进制转换。
244.【答案】244
【解析】常规进制转换。
245.【答案】2D.6C
【解析】常规进制转换。
246.【答案】139
【解析】常规进制转换。
247.【答案】9.8125
【解析】常规进制转换。
248.【答案】1111 1111 1100 . 1010 0010
【解析】常规进制转换。
249.【答案】62.5625
【解析】常规进制转换。
250.【答案】177
【解析】常规进制转换。
251.【答案】458.15625
【解析】常规进制转换。
252.【答案】326672
【解析】常规进制转换。
253.【答案】104.1
【解析】常规进制转换。
254.【答案】4.C
【解析】常规进制转换。
255.【答案】16383
【解析】常规进制转换。
256.【答案】1010 1110 1000 0110
【解析】常规进制转换。
257.【答案】1024
【解析】常规进制转换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值