深度学习
yunpiao123456
这个作者很懒,什么都没留下…
展开
-
caffe源码剖析之Blob
#ifndef CAFFE_BLOB_HPP_#define CAFFE_BLOB_HPP_#include #include #include #include "caffe/common.hpp"#include "caffe/proto/caffe.pb.h"#include "caffe/syncedmem.hpp"const int kMaxBlobAxes = 3原创 2016-09-12 09:57:43 · 703 阅读 · 0 评论 -
BP神经网络后向传播算法
下图显示了三层神经网络的后向传播算法实现过程: 每个神经元有两个单元组成。一个是权重和输入信号。另一个是非线性单元,叫做激励函数。信号e是激励信号。y = f(e) 是非线性单元的输出,即是神经元的输出。 为了训练神经网络,我们需要训练数据。训练数据由输入信号(x1 and x2 )和期原创 2016-09-13 16:15:10 · 12281 阅读 · 4 评论 -
深度网络之梯度下降算法
回归与梯度下降: 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲。 用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,转载 2016-09-13 17:59:45 · 760 阅读 · 0 评论 -
网址
http://binhua.info/machinelearning/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D%E6%B7%B1%E5%85%A5%E6%B5%85%E5%87%BAhttp://www.tuicool.com/articles/ZbMBjmhttp://m.blog.csdn.net/article/details?id=5103933原创 2016-09-13 18:08:33 · 984 阅读 · 0 评论 -
卷积神经网络概念与原理
一、卷积神经网络的基本概念 受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。 卷积神经网络与普通神经网络的区别在于,卷原创 2016-09-05 10:00:27 · 304121 阅读 · 20 评论