读——3B1B线性代数的本质

以下是我看B站《线性代数的本质》视频的随笔记录


在学习线代的时候,就有提出过类似的追根溯源的问题,问着问着没办法说服自己,还是依托于代数公式了。


数无形时少直观,形无数时难入微
数学的本质是抽象思维+逻辑推理
空间内一切向量的变换都可以基于基向量的变换得来
线性变换是啥?一个动作,一个空间变换的动作,它是连接使用不同基底描述空间的函数
(突然想说 : 线性变换可以跨越不同的维度,我本线性相关于你,但现在我的心已经回不去了。。。为啥?我被降维了)


首先摆在前头几个需知的线性代数的基本本质意义。

  1. 矩阵乘法的意义?——线性变换
  2. 行列式的意义?——线性变换后基向量的比例因子
  3. 逆矩阵的意义?——可以类比反函数、解压缩
  4. 列空间的概念?——线性变换后的基向量所张成的空间,因为之后的向量都是这个空间基向量的线性组合而已。
  5. 秩的概念?——准确表示线性变换后空间(列空间)的维数,所以只有满秩的时候才有逆矩阵
  6. 零空间的概念——降维后变成零向量的 原有的向量的集合张成的空间
  7. 特征值、特征向量的意义?——特征向量:线性变换后某一向量张成的空间不变
  8. 向量空间的意义?——万物皆有基础

P8逆矩阵、列空间和零空间 Ax=v
逆矩阵解方程。

  • 无解:线性变换到更高纬,不可能;
  • 唯一解:线性变换在此维度下,可逆
  • 无穷解:线性变化降维,原来维上有无穷多种

    即便不存在逆变换,解仍然可能存在,只是有解的条件更为严格。比如二维平面降成一维直线,只有在同一条直线上(也就是线性相关才有解,否则无解)
    对于一个满秩变换来说,唯一能在变换后落在原点的就是零向量。所以齐次线性方程组 r=n 满秩时,只有零解;而当 r <n 时,也就是降维了,比如对于一个二维平面内的 有一条特殊直线上的很多向量 降到一维直线上 全部缩成了一个点,对应非满秩的齐次方程有无穷多解,一个基础解系。
    零空间也叫kernal,对应 被降空间维数 n-r 被压缩到零向量的集合。也就是说我要求解的x在零空间里面喽,也就是可以对应基础解系为什么是n - r 了,这个构成零空间的基向量的个数。
求Ax=0,而零空间给出的就是这个向量方程所有可能的解,至少我们知道了解在哪里~
列空间 + 零空间 = 原空间


P9非方阵
如果求这个行列式,就是和问二维平面的体积,一维直线的面积一样,不存在,就是说本来是二维空间,但是视角变成了三维空间的一个平面,只是说把它放到了更高纬的空间解释,并没有本质上的升维


P10 36点积与对偶性
Q:为什么点击的对应坐标相乘并将结果相加,和投影有关系?
A:最令人满意的答案是对偶性(duality):Natural-but-surprising correspondence.
——引入P3的线性变换
F:可以发现:两向量相乘和1*2矩阵(二维降一维)*向量 有同样的效果,将向量转换为数的这一线性变换 和 这个向量本身有着某种联系。
A:这种联系在几何上的解释:(ops😓,这得有图片解释)
两个向量的点积本质上就是高维向量在一维空间的映射,都把它投影到 u u u轴。
矩阵考虑的是跟踪基向量的变换,点乘表现为基向量在对应向量上的投影。(T精彩了)
I:但是我只能从右往左理解 u x ∗ a + u y ∗ b ux*a+uy*b uxa+uyb出发,貌似有种存在即合理的解释。划等号可以尝试相互理解,万一有某种天然的联系。
启发意义:如果看到一个线性变换是降到一维的,空间中会存在唯一的向量与之相关。
特别是最后说的!!!你应该了解向量的“个性”?(向量承担了巨大的使命,现在抛开它是一个空间中一个箭头的身份,把它看作线性变换的 物质载体 ,表面为一个符号,背后藏的是整个宇宙啊)


P11叉积
几何意义: 向 量 v ∗ 向 量 w 向量v * 向量w vw得到的向量的长度是是围成的平行四边形的面积大小,方向遵循右手定则。
before:这是以前学的知识。
now:叉积的大小表示了当前坐标系面元改变的倍数,和面积的计算方式相似,所以又可以联系上了?
在过程中可以发现 和 讲行列式差不多,都涉及到了面元,这就联系到了叉积和行列式的关系。cross product and det are friends;但是但是,貌似行列式的正负不代表叉积的方向性,是伪叉积。
1、二阶三阶行列式 可以用右手简单判断正负。
2、两个给定向量 的叉积啥时候最大?(必须有图来体现移动的状态,否则就得从公式静态的看出sinthita)边长固定时,垂直时面积最大。
但是转折来了:他告诉我 真正的叉积是通过两个三维向量生成一个新的三维向量。
我一直以为叉积是有方向的面积???但更加深入的了解是对之前不严谨的补充,面元的面积依然有重要的作用,方向用右手定则来解释就行了。
行列式重要的体现并非巧合,引入基向量也不是巧合(我就是不理解突然蹦出个公式)
好了到这里,发现 点积—矩阵 叉积—行列式。


P15向量空间
线性变换保持向量加法运算数乘运算
求导是线性运算。在后面把每个基函数求导后当做矩阵的列向量的演示中我惊呆了(头皮发麻,和矩阵乘法联系到一起了!!!)所以是先对基函数做了求导,再在那个空间下对 ‘’目标函数‘’ 进行线性变换就好了。
进一步求不定积分 可以对应逆矩阵?
在这一章中,作者为阐述什么是向量,这又上升到了哲学,向量可以是一个箭头,一组数,函数等等,就是不同角度的解释符号嘛,弹幕有人说“我爱不爱你不重要,重要的是我的心一直没有变”,(其实也可以理解为什么教材写得抽象了,铁钉钉遵守规则,受众广。如果形象的话也就只能在教辅书看到了吧,因为这针对的是我们不懂的萌新,就像我们学习都是先按自己理解,怎么形象怎么来,从感性开始再上升到理性)——普世的代价是抽象


P16克莱姆法则
已知Aα=β。
已知矩阵A,也就是变化后的基向量,和α变化后得到的β,问自己,要什么样的输入α?
为什么要把坐标值 y 和面积或体积联系起来?
因为 变化后的面积 = 面积缩放因子(行列式) * 原有的面积(又等于 y),所以可求得y


待续。。。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值