设P,Q,R是命题公式,且P⇒Q,则有P∧R⇒Q∧R
错误
正确
答案:正确
步骤:
1.建立真值表
序号 | P | Q | R | P–>Q | P∧Q | Q∧R | P∧Q–>Q∧R |
---|---|---|---|---|---|---|---|
(1) | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
(2) | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
(3) | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
(4) | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
(5) | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
(6) | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
(7) | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
(8) | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
2.可以看出上面表格最后一列,第6行是0,说明不全是是真。
3.根据题目中的条件P⇒Q,即P可以推出Q,所以P–>Q是真命题,所以上面表格可以排除第(2)和(6)行,结果
最后一列的P∧Q–>Q∧R全部为真,则结论P∧R⇒Q∧R 是正确的。