- 博客(1)
- 收藏
- 关注
原创 Backpropagation 算法公式推导及矩阵实现
对于任何一个θ,有: 对于任一节点,有 定义神经网络的总误差为: 我们希望通过随机梯度下降(Stochastic gradient descent)调整权重参数θ来最小化J。所以每一层按如下方式进行更新: 接下来开始推导: 我们令,并利用均方差计算总误差,得 然后通过变换逐级反算:
2016-02-27 10:48:11 941
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人