1 目录
2 数据结构
程序设计 = 数据结构 + 算法
数据元素相互之间存在的一种或多种特定关系的集合。
我们把数据结构分为逻辑结构和物理结构(数据结构核心)。
逻辑结构:是指数据对象中数据元素之间的相互关系。
物理结构:是指数据的逻辑结构在计算机中的存储形式。
2.1 四大逻辑结构
集合结构
线性结构
树形结构
图形结构
2.2 两大物理结构
根据物理结构的定义,我们实际上研究的的就是如何把数据元素存储到计算机的存储器中。
☆ 存储器主要是针对内存而言的,像硬盘、软盘、光盘等外部存储器的数据组织通常用文件结构来描述。
数据元素的存储结构形式有两种:顺序存储和链式存储。
顺序存储结构:是把数据元素存放在地址连续的存储单元里,其数据间的逻辑关系和物理关系是一致的。
链式存储结构:是把数据元素存放在任意的存储单元里,这组存储单元可以是连续的,也可以是不连续的。
链式存储结构的数据元素存储关系并不能反映其逻辑关系,因此需要用一个指针存放数据元素的地址。
3 算法
在解决实际问题时,当确定了数据的逻辑结构和存储结构之后,需进一步研究与之相关的一组操作(也称运算),为了实现某种操作(如查找),常常需要设计一种算法。
算法(Algorithm)是对特定问题求解步骤的一种描述。
算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。
算法效率的度量方法:时间复杂度,空间复杂度。
- 判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而更应该关注主项(最高项)的阶数,是估算的数量级。
3.1 算法的时间复杂度
算法时间复杂度:算法的时间量度,记作:T(n)= O(f(n))。
语句总的执行次数T(n)是关于问题规模n的函数。其中f(n)是问题规模n的某个函数。
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。求法:
- 用常数1取代运行时间中的所有加法常数。
- 在修改后的运行次数函数中,只保留最高阶项。
- 如果最高阶项存在且不是1,则去除。
常用的时间复杂度所耗费的时间从小到大依次是:
O(1) < O(logn) < (n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)平均运行时间是期望的运行时间。除非特别指定,我们提到的运行时间都是最坏情况的运行时间。
3.2 算法的空间复杂度
算法的空间复杂度:算法所需的存储空间,记作:S(n)=O(f(n))。
其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。常利用空间换时间(查表法,桶排序…)