C++笔记——自定义函数

1、定义 Perm–全排列函数
代码如下:

    void Perm(int* arr,int size,int N)  
    {  
     if(size == N)  
     {  
       for(size_t i=0;i<size;++i)  
           cout<<arr[i];  
       cout<<endl;  
     }  
     else  
     {  
       for(size_t i=N;i<size;++i)  
       {  
           std::swap(arr[i],arr[N]);  
           Perm(arr,size,N+1);  
           std::swap(arr[i],arr[N]);  
       }  
     }  
    }  

详细解释:
例如传入arr 数组为12345
(1)Perm(arr,5,3):表示arr数组的下标为3的开始全排列,即45全排列。
输出:12345 12354
(2)Perm(arr,5,2):表示arr的后3位全排列。即345全排列。
输出:12345 12354 12435 12453 12543 12534
(3)Perm(arr,5,0):表示arr数组全排列。此处验证省略。可自行验证。
时间复杂度为:N+N*(N-1)+N*(N-1)(N-2)+………..+1
约等于 O(N!)
以下代码可用于带重复元素的全排列:

#include<stdio.h>
#include<malloc.h>

int len;
int count = 0;
void swap(int *a, int *b)
{
    int tem;
    tem = *a;
    *a = *b;
    *b = tem;
}

bool clap(int * ar, int be, int en)
{
    if(en > be)
    {
        for(int i = be; i < en; i++)
        {
            if(ar[i] == ar[en])
                return false;
        }
    }
    return true;
}

void fullypai(int * arr, int beg, int end)
{
    if (beg == end)
    {
        for(int i = 0; i < len; i++)
        {
            printf("%d ", arr[i]);
        }
        printf("\n");
        ++count;
    }
    else
    {
        for(int i = beg; i < end; i++)
        {
            if(clap(arr, beg, i))
            {
                swap(arr+beg, arr+i);
                fullypai(arr, beg+1, end);
                swap(arr+beg, arr+i);
            }
        }
    }
}

int main()
{
    printf("please input a number len and an array include len element:\n");
    scanf("%d\n", &len);
    int * array = (int *)malloc(sizeof(int) * len);

    for(int i = 0; i < len; i++)
    {
        scanf("%d", &array[i]);
    }
    printf("\n");
    fullypai(array, 0, len);
    printf("totle:%d\n",count);
    return 0;
}

2、从0到n-1中随机等概率输出m个不重复的数

void knuth(int n,int m)
{
  srand((unsigned int)time(0));
  for(int i = 0;i<n;i++)
  {
    if(rand()%(n-i)<m)
    {
      cout<<i<<endl;
      m--;
    }
  }
}

思路解析
for循环执行了n次,每次输出不同的i值,总共满足条件的i值有m个,因此,m个不重复的数的要求已达到。
下面考虑如何等概率?
i=0时,rand()%(n-i)取值范围为0-n-1,共计n个数,此时如果输出0,只需要rand()%(n-i)小于m,因此,i=0被输出的概率为m/n
i=1时,rand()%(n-i)取值范围为0-n-2,共计n-1个数,此时如果0已经输出了,则m已经自减,此时为m-1,则i=1被输出的概率为(m-1)/(n-1);如果0没有被输出,则m未自减,此时,i=1被输出的概率为m/(n-1)。此时,i=1被输出的概率为(1-m/n)x(m/(n-1))+m/nx(m-1)/(n-1)=m/n。
依次类推,每个数被输出的概率都是m/n。
3、二分法查找元素

#include<iostream>
#include<algorithm>
using namespace std;
int find(int list[], int ele, int length)
{
    const int s = 0;
    const int e = length;
    int start = s;
    int end = e;
    while(start <= end)
    {
        int tem = (start+end)/2;
        if(list[tem] == ele)
        {
            cout << "The element is in the list" << endl;
            return 1;
        }
        if(list[tem] > ele)
        {
            end = tem-1;
        }
        if(list[tem] < ele)
        {
            start = tem+1;
        }
    }
    cout << "The element is not in the list" << endl;
    return 1;
}
int main()
{
    int a[4] = {2, 8, 5, 7};
    int len = sizeof(a)/sizeof(a[1]);
    int x;
    cin >> x;
    sort(a, a+4);
    find(a, x, len);
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页