(待完善...)
最长公共子序列是动态规划基本题目,下面按照动态规划基本步骤解出来。
序列a共有m个元素,序列b共有n个元素,如果a[m-1]==b[n-1],那么a[:m]和b[:n]的最长公共子序列长度就是a[:m-1]和b[:n-1]的最长公共子序列长度+1;如果a[m-1]!=b[n-1],那么a[:m]和b[:n]的最长公共子序列长度就是MAX(a[:m-1]和b[:n]的最长公共子序列长度,a[:m]和b[:n-1]的最长公共子序列长度)。
2.递归定义最优值
3.自底向上根据最优值的信息来构造最优解
def lcs(a, b):
lena = len(a)
lenb = len(b)
c = [[0 for i in range(lenb + 1)] for j in range(lena + 1)]
flag = [[0 for i in range(lenb + 1)] for j in range(lena + 1)]
for i in range(lena):
for j in range(lenb):
if a[i] == b[j]:
c[i + 1][j + 1] = c[i][j] + 1
flag[i + 1][j + 1] = 'ok'
elif c[i + 1][j] > c[i][j + 1]:
c[i + 1][j + 1] = c[i + 1][j]
flag[i + 1][j + 1] = 'left'
else:
c[i + 1][j + 1] = c[i][j + 1]
flag[i + 1][j + 1] = 'up'
return flag
def printLcs(flag, a, i, j):
if i == 0 or j == 0:
return
if flag[i][j] == 'ok':
printLcs(flag, a, i - 1, j - 1)
print(a[i - 1], end='')
elif flag[i][j] == 'left':
printLcs(flag, a, i, j - 1)
else:
printLcs(flag, a, i - 1, j)
a = 'ABCBDAB'
b = 'BDCABA'
flag = lcs(a, b)
printLcs(flag, a, len(a), len(b))