二分查找的实现

在一个有序的数组中,查找一个数,可以使用二分查找,但是这个算法也是有很多地方需要注意的。正确的写法如下所示。

int binary_search(int* array,int n,int key)
{
	int low = 0;
	int high = n-1;
	int mid;
	if(high < low)
		return -1;
	while(high >= low)
	{
		mid = low + ((high-low)>>1);
		if(array[mid] == key)
			return mid;
		else if(array[mid] > key)
			high = mid-1;
		else
			low = mid+1;
	}
	return -1;
}

但是对于上面的二分查找还有另外一种写法,只不过需要注意上述代码中需要注意的地方。

需要注意的地方就是:

如果high = n-1,while(high>=low)  high = middle-1;

如果high = n while(high > low) high = middle;

同时也可以使用二分查找解决查找边界的问题,查找一个数在一个有序数组中的上上界和下边界。


在STL库中有一个函数为upper_bound函数和一个lower_bound函数,其中第一个函数为找到一个位置,此位置是最后一个可插入此元素的位置,后一个函数是第一个不小于此元素的值。在STL源码库使用的high>low的思想,我们来继承上述的思想来实现这两个函数。

//找下限 
int lower_bound(int* array,int low,int high,int key)
{
	int mid;
	if(high< low)
		return -1;
	while(high>=low)
	{
		mid = low + ((high-low)>>1);
		if(array[mid] < key) 
			low = mid+1;
		else
			high = mid-1;
		//cout<<mid<<endl;
	}
	return low;
}

int upper_bound(int* array,int low,int high,int key)
{
	int mid;
	if(high < low)
		return -1;
	while(high >= low)
	{
		mid = low +((high-low)>>1);
		if(array[mid] > key)
			high = mid-1;
		else
			low = mid+1;
	}
	return low;
}
在STL中也有这两个函数的实现,但是在STL中的算法,所有的迭代器都是遵循左闭右开的原则,所以在哪里的首先都是high>low,然后再循环中使用的都是high = mid这种思想,在这里使用的都是左闭右闭的原则,所以使用的都是high  = mid-1这个做法。


    ©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页