深度学习
文章平均质量分 71
余思荷
记录余小荷的进步过程,为了成为一个优秀的程序媛!给老子冲!
展开
-
【深度学习】递归神经网络
对于分类任务来说,如果仅仅给出分类的结果,在某些场景下,提供的信息可能并不充足,这就会带来一定的局限。没优化之前,他给的错误的那个数据太多了,就相当于只有一个正确答案,然后除此之外,世界上所有单词跟这个词儿在这个句子中都是错误的答案,那这样一下子让他去计算,那不是特别慢吗?因为RNN网络的记忆能力太强了,每次的迭代全部记忆,最后的结果会把前面全部的结果全部考虑进来,考虑问题就不再精确,会导致模型训练的误差,LSTM网络应运而生。,你光知道对的他,他没法儿训练,就相当于只他只背过了这一条句子。原创 2023-02-12 23:28:27 · 469 阅读 · 0 评论 -
【深度学习】卷积神经网络
当pooling之后会有数据损失,下次用卷积弥补起来,用特征图的个数弥补数据的确实。全联接层要将所有的特征值拉成一个特征向量,然后进行五分类操作。带参数计算的才算一层:卷积层,全联接层(上图为七层神经网络)卷积网络中可以无限堆叠,但是并不是堆叠次数越高效果越好。每个区域都是用相同的核进行训练的,参数是全局共享的。想要把层数堆叠起来,并且将不利于模型的层权重设为零。2015年:经典网络-Resnet 残差网络。左图:传统网络 右图:残差网络。2014年:经典网络-VGG。我们希望感受野越大越好。原创 2023-02-12 03:24:25 · 1031 阅读 · 3 评论