- 博客(256)
- 收藏
- 关注
转载 大数据中数据库是如何工作的(二)
数据库是可以轻松访问和修改的信息的集合,但是一堆简单的文件也可以做到这一点。实际上,最简单的数据库(如SQLite)仅是一堆文件,你知道大数据中数据库是如何工作的吗? SQLite是一堆精心设计的文件,因为它允许你执行以下操作:使用确保数据安全和连贯的交易,即使你正在处理数百万个数据,也可以快速处理数据,数据库可以如下图所示: 将数据库分为相互交互的多个组件。 核心组件: 进程管理器:许多数据库都有一个需要管理的进程/线程池。而且,为了获得纳秒级的性能,某些现代.
2021-04-19 16:28:17 514
转载 大数据中数据库是如何工作的(一)
当涉及到关系数据库时,我不禁会以为有些东西丢失了。它们无处不在。有许多不同的数据库:从小型且有用的SQLite到功能强大的Teradata。但是,只有少数几篇文章解释了数据库的工作方式。你可以自己在Google上搜索“关系数据库的工作原理”,可以查看结果很少,而且文章简短。现在介绍它们的工作原理,看看大数据中数据库是如何工作的。 关系数据库是否太老太无聊,无法在大学课程,研究论文和书籍之外进行解释? 作为开发人员,肯定不会使用自己不了解的东西。而且,如果数据库已经使用了很多.
2021-04-14 16:01:41 532
转载 如何使用Python生成数据分析报告
逛知乎的时候看到这样一个提问,Python自动化办公能做那些有趣或者有用的事情? 看了一下这个提问,我想这可能是很多职场人面临的困惑,想把Python用到工作中来提升效率,却不知如何下手?Python在自动化办公领域越来越受欢迎,重复性工作让Python去做将是一种趋势。 看了一些办公自动化的文章,感觉更多是知识的罗列,看完后不知所云。为了更方面大家去学习,今天AAA教育小编将以学生考试成绩为例,手把手教你使用Python完成自动化办公,一键生成学生成绩数据分析报告(wor.
2021-01-06 17:56:39 1552
转载 大数据分析数据挖掘工具sklearn使用指南
一、使用sklearn数据挖掘 1、数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。 显然,这不是巧合,这正是sklearn的设计风格。我们能够更加优雅地使用sklearn进行特征工程和模型训练工作。此时,不妨从一个基本的数据挖掘场景入手: 我们使用sklearn进行虚线框内的工作(sklearn也可以进行文本特征提取)。通过分析sklearn源码,我们可以看到除训练,预测和评估以外,处理其他工作的类都实现了3个方法:fi.
2021-01-05 17:42:34 667
转载 大数据分析Python有哪些爬虫框架
一、Scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。 二、PySpider pyspider 是一个用python实现的功能强大的网络爬虫系统,能在浏览器界面上进行脚本的编写,功能的调度和爬取结果的实时查看,后端使用常用的数据库进行爬取结果的存储,还能定时设置任务与任务优先级等。 三、Crawl..
2020-12-31 10:12:54 309
转载 如何使用pandas中的时序数据分组运算
一、简介 我们在使用pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。 而在pandas中,针对不同的应用场景,我们可以使用resample()、groupby()以及Grouper()来非常高效快捷地完成此类任务。 二、在pandas中进行时间分组聚合 在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用res
2020-12-31 10:11:08 678
转载 如何使用Python将PDF文档转为MP3音频
一、转语音工具 微信读书里的电子书有配套的自动音频,而且声音优化的不错,比传统的机械朗读听起来舒服很多。 记得之前看到过Python有一个工具包,可以将文字转换为语音,支持英文和中文,而且能调节语速语调、导出mp3等。 去Github查了下,这个库叫:pyttsx3 简单来说,pyttsx3可以文字转语音,且是离线工作的,这一点就很实用。 安装比较容易,直接在命令行用pip安装: 我准备动手试试,将PDF书籍转成音频。 用什么..
2020-12-29 17:13:32 548 1
转载 Python最强IDE PyCharm详细使用指南
PyCharm 是一种 Python IDE,可以帮助程序员节约时间,提高生产效率。那么具体如何使用呢?Python最强IDE PyCharm详细使用指南从 PyCharm 安装到插件、外部工具、专业版功能等进行了一一介绍,希望能够帮助到大家。 之前也没系统地介绍过 PyCharm,怎样配置环境、怎样 DeBug、怎样同步 GitHub 等等可能都是通过经验或者摸索学会的。在Python最强IDE PyCharm详细使用指南中,我们并不会提供非常完善的指南,但是会介绍 PyCharm 最主要的一些
2020-12-28 15:26:53 777
转载 如何使用Python爆破简单加密的文件
前言 这里只是分享一下Python如何生成爆破字典,对于简单的一些加密文件,咱们可以跑字典获取正确的密码,比如zip加密文件。给大家简单的介绍一下爆破字典的方法,希望对大家学习Python有帮助! 基本环境配置 版本:Python3.6 系统:Windows 实例1: 如果我知道某个账户的密码一定是数字并且只有4位(其实这种情况也不少见) 那么我就可以开发一个0000-9999的字典: 运行后就可以在当前目录生成一个dict.txt字典.
2020-12-25 13:56:22 319
转载 使用数据分析看破蛋壳的骗局
蛋壳公寓大家看到或听到这4个字,恐怕都是警铃大响,对于曾经的租客来说,甚至咬牙切齿。 蛋壳公寓从2015年成立到当前的破产跑路,期间公司的高光时刻也不少,但最终的破产跑路这个结局是不是必然呢? 一个公司是否能长期可持续的发展,是由多方面决定的,现金流决定了公司能否生存,盈利模式决定能不能吸引资金的青睐,经营管理模式决定了公司向上发展的空间。【蛋壳公寓】一个成立5年上市,上市即巅峰,直到目前的破产跑路。蛋壳的发展路程对我们有什么启发和借鉴么,让我们从数据的视角来窥探这其中各种.
2020-12-25 13:54:36 200
转载 如何写专业的数据分析报告
在互联网行业里,很多岗位都需要和数据打交道,比如运营、产品、销售等。数据分析报告的作用在于以特定的形式将数据分析结果展示给决策者,给他们提供决策参考和依据。在职场中,一份专业的报告更能体现你的价值。那么写一份专业的报告,需要包含哪些内容呢?在讲报告的内容之前,我们需要知悉数据报告有哪些类型。 一、数据分析报告的类型 由于数据分析报告的对象、内容、时间和方法等情况不同,因此存在不同形式的报告类型。我们常见的几种数据分析报告有专题分析报告、综合分析报告和日常数据通报等。 二、专题分析报告
2020-12-24 09:19:26 499
转载 数据分析师如何做数据分析汇报
每次做数据分析汇报脑子就嗡的一声,不知道该说什么了。好多人做数据分析汇报时都遇到这样的问题,如何解决这个问题,看一张图就够了,如下: 简单解释下,办事情本身是有流程的: 1)明确目标 2)明确行动方案 3)监控进度 4)进度有问题,解决问题 5)进度没问题,报声平安 6)做完了,做的好,总结经验 7)做完了,做的不好,指出问题,改进 有些同学问:老师,我做的就是一张常规日报,不是这种项目式的汇报。每天对着一条数,实在看不出来啥,也不.
2020-12-23 14:05:28 918
转载 如何从0到1建立数据分析指标体系底层逻辑
随着公司业务规模扩大,各类相关的数据量增加,大数据指标也越来越多。如果缺乏大数据指标体系和分析方案,就会难以判断整体业务发展状况、难以衡量产品/活动效果、等等。 如今,各行各业都在说,“我们要数字化管理”,脱离“拍脑袋”时代。但是,到底怎么落地?大数据指标怎么建立合理?不同的公司业务大相径庭,就算是同一个行业,也有不同规模,不同细分客户群,很难一概而论。有时候,看到竞品公司有哪些指标,虽然不知道有没有用,我们也急着“跟风”。 什么才是适合自己公司或部门的数据体系?“人、货、场” 理论似乎很有
2020-12-21 14:00:41 405
转载 大数据分析思维和方法有哪些
在大数据分析中,大数据分析思维是框架式的指引,实际分析问题时还是需要很多“技巧工具”的。就好比中学里你要解一元二次方式,可以用公式法、配方法、直接开平方法、因式分解法。 大数据分析里也有技巧,在一些通用的分析场景下可以快速使用,而且对未来构建大数据分析模型也有帮助。 接下来就分享常见的5种大数据分析方法,分别是:公式法、对比法、象限法,二八法,漏斗法,常常多种结合一起使用。 注:主要偏思维层面的,基于业务问题对数据的探索性分析,不同于专业统计学中的数据处理方法。 一、公式法
2020-12-19 10:16:39 2442 1
转载 大数据分析中关系数据库SQL的设计思想
数据分析中关系数据库的设计思想介绍关系数据库的设计思想:在 SQL 中,一切皆关系。关系数据库同样也有自己的设计思想:在 SQL 中,一切皆关系。 一、关系模型 关系模型(Relational model)由 E.F.Codd 博士于 1970 年提出,以集合论中的关系概念为基础;无论是现实世界中的实体对象还是它们之间的联系都使用关系表示。我们在数据库系统中看到的关系就是二维表(Table),由行(Row)和列(Column)组成。因此,也可以说关系表是由数据行构成的集合。 .
2020-12-18 14:15:50 359
转载 学习大数据分析多久可以找到工作
AAA教育大数据分析课程,从课程的选题、市场对比、课件的制作、话术的录制、视频的制作、审核等都经过层层讨论的输出,同时也获得了很多学员的高度认可,比价格和质量来讲,性价比独一无二,别人把教育当事业,我们把教育当情怀。 学习的最好方式不是输入而是输出,很希望大家能和我们一起交流学习、一起进步,拥有了自己的输出,这些知识才真正意义上算是你的。 常见问题答疑: Q1、课程学不会,可以多次学吗? A:是的,可以多次学,随到随学。 Q2、课程中遇到问题怎么办? A:每个课程都有
2020-12-16 17:10:02 561
转载 机器学习是什么
机器学习好比高中时代的性——人人都在谈论,但除了老师们知根知底外,只有很少的人能说清楚怎么回事。如果阅读网上关于机器学习的文章,你很可能会遇到两种情况:充斥各种定理的厚重学术三部曲(我搞定半个定理都够呛),或是关于人工智能、数据科学魔法以及未来工作的天花乱坠的故事。 我决定写一篇酝酿已久的文章,对那些想了解机器学习的人做一个简单的介绍。不涉及高级原理,只用简单的语言来谈现实世界的问题和实际的解决方案。不管你是一名程序员还是管理者,都能看懂。 为什么我们想要机器去学习? .
2020-12-15 09:54:56 598
转载 大数据分析常用pandas函数有哪些
熟练掌握pandas函数都能帮我们在数据分析过程中节省时间。pandas还有很多让人舒适的用法,这次就为大家介绍5个pandas函数! 大数据分析常用pandas函数有哪些由Python大数据分析编译。 一、 explode explode用于将一行数据展开成多行。比如说dataframe中某一行其中一个元素包含多个同类型的数据,若想要展开成多行进行分析,这时候explode就派上用场,而且只需一行代码,非常节省时间。 用法: 参数作用: colum.
2020-12-12 14:43:54 485
转载 数据分析Excel必备技能有哪些
处理数量较大的数据时,一般分为数据获取、数据筛选,以及结果展示几个步骤。在 Excel 中,我们可以利用数据透视表(Pivot Table)方便快捷的实现这些工作。 数据分析Excel必备技能有哪些首先手把手的教你如何在 Excel 中手动构建一个基本的数据透视表,最后用 VBA 展示如何自动化这一过程。 注: 1、数据分析Excel必备技能有哪些基于 Excel 2016 for Mac 完成,个别界面和 Windows 版略有差异 2、如果要完成 VBA 的部分,Excel
2020-12-11 09:16:55 869
转载 数据可视化作品有哪些
在一个信息大爆炸的时代,每天都有很多的新消息、新发现、新趋势向我们狂轰乱炸而来。在这个过程中,我们既是数据的生产者,也是数据的使用者,然而初次获取和存储的原始数据总是杂乱无章的。 要想数据达到生动有趣、让人一目了然的效果,就需要借助数据可视化。数据图表天才们可以用简洁、直观又有趣的图表帮我们把大量的信息汇聚在小小的一张图表中,不仅让枯燥的数据和信息变了模样,还让洞察见解跃然纸上,轻松传达复杂观点。 今天就特意为大家收罗了一些优秀的数据可视化作品,让我们一起来感受数据之美。 1. 学校枪
2020-12-10 18:21:54 592
转载 大数据如何使用OSM模型和AARRR模型搭建指标体系
指标体系是什么? 如何使用OSM模型和AARRR模型搭建指标体系? 如何统一流程、规范化、工具化管理指标体系? 一、 什么是指标体系 1.1 指标体系定义 指标体系是将零散单点的具有相互联系的指标,系统化的组织起来,通过单点看全局,通过全局解决单点的问题。它主要由指标和体系两部分组成。 指标是指将业务单元细分后量化的度量值,它使得业务目标可描述、可度量、可拆解,它是业务和数据的结合,是统计的基础,也是量化效果的重要依据。 指标主要分为结果型和过程型: a)
2020-12-09 11:37:04 1766
转载 学习大数据分析4个不为人知的真理
学习大数据分析4个不为人知的真理? 你做好准备学习大数据分析了吗? 你是否有了学习大数据分析的想法?在过去的几年中,这一直是一个非常热门的话题,并且肯定会在接下来的几年中成为话题。现在越来越多的人成为大数据分析师,但是市场依然供不应求,数据科学家更是少之更少,企业拿钱也找不到人才。 为什么会有这样的局面? 部分问题是许多有抱负的大数据分析不知道该领域会带来什么,不知道做职业规划,顶尖人才稀缺。 在学习大数据分析4个不为人知的真理中,我想向你展示在学习大数据.
2020-12-08 09:12:28 298
转载 大数据分析10种最佳数据屏蔽工具和软件
大数据分析10种最佳数据屏蔽工具和软件,市场上可用的最佳开源免费数据屏蔽工具列表和比较: 数据屏蔽是用于隐藏数据的过程。 在数据屏蔽中,实际数据由随机字符屏蔽。它可以防止未经授权查看机密信息的人。 数据屏蔽的主要目的是在某些情况下,未经某人允许,某些人可能会注意到这些数据,从而屏蔽复杂的私人数据。 为什么要屏蔽数据? 数据屏蔽可屏蔽组织的PII数据或其他机密信息。 它可以保护文件从一个位置到另一位置的传输过程。它还有助于保护应用程序开发,测试或CRM应用程序的安全。它
2020-12-07 13:39:02 2431
转载 通过深度学习+TensorFlow.js对蒙娜丽莎进行动画处理
看蒙娜丽莎(Mona Lisa)画像时,你会发现她的眼睛将四处移动跟随你。这就是所谓的“蒙娜丽莎效应”。为了娱乐,我们把蒙拉丽莎画像制成交互式数字肖像,通过你的浏览器和网络摄像头将这种现象变为现实。 该项目的核心是利用TensorFlow.js,深度学习和一些图像处理技术。总体思路如下:首先,我们必须生成蒙娜丽莎(Mona Lisa)头的图像序列,眼睛从左到右凝视。从该项目中,我们将根据观看者的位置连续不断地实时选择并显示单个帧。 在通过深度学习+TensorFlow.js.
2020-12-05 09:12:28 455
转载 python-java等编程语言最适合找什么工作
以下编程语言被报告为最常用的语言: 1、JavaScript 2、HTML / CSS 3、SQL 4、python 5、java 下面我们将更详细地描述与每种编程语言相关的软件开发类型和职称。 5种最佳编程语言: 一、JAVASCRIPT JavaScript始终是软件开发人员的首选。它通常用于前端和后端开发以及移动开发,这可能是因为它受所有主要浏览器的支持,并被包括Facebook和YouTube在内的Web顶级网站所利用。对于初学者来说,这也是
2020-12-04 16:43:44 166
转载 数据分析在下一波新冠大流行中有哪些作用
数据分析在下一波新冠大流行中有哪些作用?在短短的几个月内,新型冠状病毒COVID-19流行病就已经颠覆了整个世界。在短期内,国家和区域的应对措施包括通过隔离和限制行动来遏制。正确实施这些解决方案旨在限制传染病的蔓延,以免使我们全球医疗保健和应急管理系统的紧张资源和能力不堪重负。但是,考虑到这些措施的严重经济副作用,世界各地的当局已经在计划放宽限制行动,以期预期到价差下降。 数据和分析在全球响应的第一波中发挥了核心作用。从大流行的最早时期开始,我们就收到了世界各地勤奋的志愿者收集的.
2020-12-04 16:42:41 468
转载 大数据分析工作流程是什么
大数据分析工作流程是什么?高效的工作流应该做到这一点-流程化-将我们从项目的每个阶段无缝地引导到下一个阶段,优化任务管理,并最终指导我们从业务问题到解决方案再到价值。随着数据泛滥的持续减少,企业正在淹没数据,但却渴望获得洞察力。这使得雇用大数据分析团队至关重要。但是,由什么构成大数据分析团队?大数据分析工作流程的最佳实践是什么?大数据分析家需要什么才能最大程度地执行大数据分析工作流程? 尽管没有解决大数据分析问题的模板,但OSEMN(获取,清理,探索,模型,解释)大数据分析管道是.
2020-12-03 16:48:25 1521
转载 22种大数据分析可视化工具
22种大数据分析可视化工具有哪些?数据可视化工具在软件测试领域中扮演着非常重要的角色。 数据可视化包括数据可视表示的设计和分析。 在当今世界,我们正在处理海量数据,其中对数据可视化软件的需求日益突出,以通过图形,趋势,仪表板,图表等可视化辅助手段帮助人们理解数据的重要性。 2020年排名前22位的最佳数据可视化工具 此处列出了最流行的免费和商业数据可视化软件的列表,以及它们的比较和网站链接,以方便您理解。 一、Xplenty Xplenty是基于云的.
2020-12-03 16:46:55 5257
转载 什么是人工智能AI
什么是人工智能(AI)? 人工智能(AI)指的是在被编程为像人类一样思考并模仿其行为的机器中对人类智能的模拟。该术语还可以应用于任何表现出与人类思维相关的特征(例如学习和解决问题)的机器。 人工智能的理想特征是其合理化并采取最有可能实现特定目标的行动的能力。 了解人工智能 当大多数人听到人工智能一词时,他们通常想到的第一件事就是机器人。那是因为大型的电影和小说都编造了关于类似人类的机器的故事,这些机器在地球上造成了严重破坏。但是事实离真相还很远。 人工智能.
2020-12-02 17:52:20 11135
转载 IT和OT融合缩小物联网感知差距
当一家公司决定推进一个新的物联网项目时,这不仅仅是IT讨论。物联网连接了信息技术(IT)和运营技术(OT)的世界,例如控制系统,数据采集系统(DAQ)和工业网络。在一些公司中,这两个团队从来没有在同一房间里,更不用说一起工作以部署IoT系统了。他们对物联网有不同的看法,以及有关如何建立协作关系的问题。然而,在许多情况下,成功的业务成果取决于IT / OT的融合。 物联网需要紧密的IT / OT协作 物联网快速传播到工厂车间,风力发电场,车队和其他边缘位置,是当今工业环境中发.
2020-12-02 17:51:11 1203
转载 大数据分析人工智能中机器学习算法有哪些
术语机器学习常常被错误互换与人工智能。实际上,机器学习是AI的一个子领域。机器学习有时也与预测分析或预测建模相混淆。同样,机器学习可用于预测建模,但这只是预测分析的一种类型,其用途比预测建模更广泛。 机器学习是计算机无需明确编程即可学习的能力 机器学习最基本的方法是使用编程算法来接收和分析输入数据,以预测可接受范围内的输出值。随着将新数据输入这些算法,他们将学习并优化其操作以提高性能,并随着时间的推移开发智能。 机器学习算法有四种类型:有监督,半监督,无监督和强化。.
2020-12-01 14:34:13 1213
转载 大数据分析边缘计算是什么有什么价值
边缘计算是指在生成或收集物联网(IoT)数据的网络“边缘”处或附近发生的处理。结合使用边缘计算和边缘分析(包括人工智能和机器学习)的公司,可以获取有价值的实时洞察,从而获得竞争优势。 边缘计算的最大优势-大大减少了分析处理的延迟-引起了人们对该技术的热议。在边缘计算出现之前,来自连接资产的数据必须从网络边缘传回数据中心或云以进行处理。这种延迟限制了企业快速(或自动)利用其数据洞察力的潜力。 借助边缘计算和边缘分析,公司可以在现场处理数据,从而自动执行决策和采取行动。我们正在.
2020-12-01 14:32:39 1227
转载 模仿生物深度学习模型人工智能系统可以控制少量人造神经元的车辆
如果模仿生物模型,人工智能(AI)可以变得更加高效和可靠。人工智能研究的新方法在实验中取得了巨大成功。 从搜索引擎到无人驾驶汽车,人工智能已经进入我们的日常生活。这与近年来已获得的巨大计算能力有关。但是AI研究的新结果现在表明,与以往相比,更简单,更小的神经网络可以更好,更有效,更可靠地解决某些任务。 国际上已经有人开发了一种基于细线动物(例如线虫)的大脑的新型人工智能系统。这种新颖的AI系统可以控制带有少量人造神经元的车辆。 该系统比以前的深度学习模型具有决定性的优势:它可以更好地应
2020-12-01 09:25:14 415
转载 SceneGraphNet用于3D室内场景增强的神经信息传递
抽象在SceneGraphNet用于3D室内场景增强的神经信息传递中,我们提出了一种神经消息传递方法,以通过匹配周围环境的新对象来增强输入的3D室内场景。给定一个输入,可能不完整的3D场景和一个查询位置,我们的方法将预测一个非常适合该位置的对象类型的概率分布。通过以密集图传递学习到的消息来预测我们的分布,密集图的节点表示输入场景中的对象,边缘表示空间和结构关系。通过注意力机制对消息进行加权,我们的方法将学习重点放在最相关的周围场景上下文上,以预测新的场景对象。我们发现,根据SUNCG数据集中的实验,在正
2020-12-01 09:23:35 499
转载 大数据分析中带有动画的常用路径规划算法
大数据分析中带有动画的常用路径规划算法,该存储库实现了机器人技术中常用的一些路径规划算法,包括基于搜索的算法和基于采样的算法。我们为每种算法设计了动画以显示运行过程。 目录结构 动画-基于搜索 最佳第一&Dijkstra A *和A *变体 ...
2020-11-30 09:45:20 838
转载 PathPlanning常用路径规划算法实现与动画
【PathPlanning:常用路径规划算法实现与动画】’PathPlanning - Common used path planning algorithms with animations.' 摘自:https://www.aaa-cg.com.cn/data/2911.html...
2020-11-30 09:43:12 592
转载 tsmoothie:以向量化方式进行时序平滑和异常检测的Python库
tsmoothie 一个用于以向量化方式进行时间序列平滑和离群值检测的python库。 总览 tsmoothie以快速有效的方式计算单个或多个时间序列的平滑度。 可用的平滑技术是: 1)指数平滑 2)具有各种窗口类型(常量,汉宁,汉明,巴特利特,布莱克曼)的卷积平滑 3)多项式平滑 4)各种样条平滑(线性,三次,自然三次) 5)高斯平滑 6)Binner平滑 7)低价 8)各种季节性分解平滑(卷积,最低,自然三次样条) 9)带
2020-11-30 09:40:47 1955
转载 学大数据分析要学数据库sql吗
你已经听说过大数据分析所需的顶级技能。你知道你应该从哪里开始吗?你可以获得的最简单,最重要的技能是SQL。在开发此技能之前,你必须了解SQL在大数据分析中的作用,以及为什么每个大数据分析专家都将SQL标记为对大数据分析家重要的一门。因此,让我们探讨一下SQL对大数据分析的重要性。 SQL是所有关系数据库的标准查询语言。它也是当前使用SQL作为关系数据库的关键API的大数据平台的标准。我们将逐步介绍SQL的一些关键方面及其在大数据分析定义的当前情况下的有效性。然后,我们将继续学习大.
2020-11-27 17:37:48 1471
转载 人工智能有什么价值和意义
人工智能有什么价值和意义,人工智能(AI)使机器可以从经验中学习,适应新的输入并执行类似人的任务。您今天听到的大多数AI示例-从下象棋的计算机到自动驾驶汽车-都严重依赖于深度学习和自然语言处理。使用这些技术,可以训练计算机通过处理大量数据并识别数据中的模式来完成特定任务。 , 一、人工智能历史 人工智能一词始创于1956年,但是由于数据量的增加,先进算法以及计算能力和存储能力的提高,人工智能在当今变得越来越流行。 1950年代早期的AI研究探索了诸如解决问题和符号方法之类的主题。
2020-11-27 17:36:28 9734
转载 大数据分析学习哪些编程语言
大数据分析已成为21世纪最受欢迎的技术之一。由于行业对大数据分析家的需求很高,因此需要具有所需技能的人员才能精通该领域。除了数学技能外,还需要编程专业知识。但是,在获得专业知识之前,有抱负的大数据分析家必须能够对工作所需的编程语言类型做出正确的决定。在大数据分析学习哪些编程语言中,我们将学习一些必需的大数据分析编程语言,以便成为一名熟练的大数据分析家。 大数据分析导论 编程是软件开发的基础。大数据分析是包括计算机科学在内的多个领域的集合。它涉及科学过程和方法的使用,以分析数据并从中得出结论。
2020-11-27 17:35:14 2731
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人