我们正在进入物联网,大数据分析和云计算时代。这些技术中的每一个都有一些瓶颈,例如可伸缩性差,安全性问题,安装困难,容错,维护以及传统信息技术框架中的低性能。因此,我们需要利用这些技术中的每一种来找到其他问题的解决方案。
因此,物联网,大数据分析和云计算是相互影响的。尽管云计算和大数据分析之间有着内在的联系,但物联网扮演着数据源单元的角色。此外,大数据分析和云计算技术的突破不仅将解决问题,还将促进物联网技术的广泛应用。
我们将讨论物联网,大数据分析和云计算这三种技术之间的相互关系。
物联网,大数据分析和云计算简而言之
尽管我们都熟悉物联网,大数据分析和云计算的术语,但是,在我们讨论主题之前,让我们对其进行概述-
什么是物联网?
物联网(IoT)是指通过互联网连接物理对象的系统。物联网中的“事物”可以指通过IP地址分配的人员或任何设备。“物”在嵌入式技术的帮助下,无需任何人工干预即可通过互联网收集和传输数据。它可以帮助他们与外部环境或内部状态进行交互以做出决策。
什么是大数据分析?
大数据分析意味着大量的结构化,非结构化或半结构化数据(PB或PB),并对这些数据进行分析以获取业务趋势的见解。
什么是云计算?
云计算以按需付费模式向用户提供服务。云提供商提供三种主要服务。这些服务概述如下:
1)基础架构即服务(IAAS)
云服务提供商提供了整个基础架构以及与维护相关的任务。
2)平台即服务(PAAS)
云提供程序提供了对象存储,运行时,队列,数据库等资源。但是,与配置和实现相关的任务的责任取决于使用者。
3)软件即服务(SAAS)
如果平台和基础架构的IaaS到位,则该服务是最便捷的服务,它提供了所有必要的设置和基础架构。
大数据分析与云计算之间的关系
随着生成大量数据,云计算在该数据的存储和管理中发挥着重要作用。这不仅涉及大数据分析的增长,还涉及诸如Hadoop之类的数据分析平台的扩展。结果,它为云计算创造了新的机会。因此,AWS,Google和Microsoft等服务提供商正在以具有成本效益的方式提供自己的大数据分析系统,该系统可针对各种规模的企业进行扩展。
反过来,这又导致了一种新的服务模型,称为“服务即分析(AaaS)”。这将提供一种更快且可扩展的方式来集成不同类型的结构化,半结构化和非结构化数据,对其进行分析,实时转换和可视化。
此外,大数据分析云计算关系可以从以下观点和好处进行评估:
云计算环境通常具有多个用户终端和服务提供商。用户从收集终端中使用大数据分析工具收集数据。另一方面,它从服务提供商端保存,存储和处理大数据分析。因此,云计算提供了大数据分析基础架构。基础结构必须提供按需资源和服务,以确保服务不中断。
由于云环境是可扩展的,因此无论数据量如何,它都可以提供适当的数据管理解决方案。如果必要,云计算服务提供商还可以根据用户要求提供安全策略。
身份管理和访问控制是处理公司机密数据时的两个主要问题。通过抽象化信息的内部细节,云计算可以使用简单的软件界面满足此安全要求。另外,这保证了用户数据的完全机密性,并且仅提供对授权用户的访问。
用于数据处理的大数据分析可以分布在全球各地,而在不同地点维护如此庞大的服务器对于组织来说是一项昂贵的措施。由于云计算可以通过地理位置分散的服务器以及虚拟服务器存储和处理数据,因此大大降低了大数据分析处理的成本。
云计算使用不依赖于用户设备效率的高级软件和应用程序。此外,它取决于网络服务器及其强度。相反,如果我们将个人资源用于依赖于用户设备的大数据分析。因此,大数据分析云计算服务是有益的。
云计算支持通过网络的高速数据流。结果,它导致更快的大数据分析处理。
物联网与大数据分析之间的关系
物联网是一个机会,可以简化许多部门的操作,以实现机器与人(M2H),设备与机器(M2M)之间的交互。到目前为止,它还有足够的改进空间。在大多数情况下,传感器生成的数据被馈送到大数据分析系统进行分析,并从中生成最终报告。因此,这是两种技术之间相互联系的要点。
物联网与大数据分析的交汇带来了新的IT挑战
1) 数据存储
2) 整合
3) 以及分析
但是,它创造了许多机遇,而不是挑战。物联网预计在未来十年内将为互联网行业带来19万亿美元的市场潜力,这将为物联网和大数据分析领域的研究和开发提供更多的机会。
物联网与云计算之间的关系
物联网发展了互联网网络的新概念。这样可以实现多个对象之间的通信,其中包括
1)智能设备
2)移动设备
3)传感器和其他。
物联网的体系结构在体系结构的所有元素之间提供了有效的通信。元素可能是
1)对象
2)盖茨
3)网络基础设施
4)云基础架构
结合使用物联网和云计算有多个好处:
1)在云基础架构中,您可以部署应用程序以快速处理和分析数据,并尽快做出决策。
2)据估计,到2020年将产生近4.4万亿GB数据。这无疑会给其基础设施带来巨大压力。因此,需要使这种巨大压力最小化,并找到一种解决方案来传输数据。另一方面,云计算可提供足够的性能和可伸缩性来存储和操作如此大量的数据。
3)物联网和云计算有着互补的关系。物联网生成大量数据时,许多云提供商允许通过互联网传输数据,这意味着提供了一种导航数据的方式。
4)云计算有助于在物联网开发中进行协作。使用云平台,物联网开发人员可以远程存储数据并轻松访问。
5)云计算有助于推进物联网设备的分析和监控。
6)一旦基础架构中发生任何安全漏洞,利用通用API和后端基础架构的IoT设备就可以立即通过Cloud接收重要的安全更新。物联网和云计算的结合功能是确保用户安全和隐私的重要参数。
最终,它是物联网,大数据分析和云计算的融合
因此,从以上描述中,我们可以找到三种互斥技术之间的相互依赖性。在这里,云计算扮演着物联网和大数据分析共同工作场所的角色,其中物联网是数据的来源,大数据分析作为一种技术是数据的分析平台。
根据IDC的数据,在未来五年内,将有超过90%的物联网数据托管在云平台上。其背后的原因是:
1)大量的物联网数据生成将为大数据分析系统提供数据。
2)降低物联网中数据混合的复杂性是使其收益最大化的标准之一。其背后的概念是–如果物联网应用程序和数据孤岛运行,我们将无法充分发挥其潜力。因此,为了获得更好的见解并做出决策,混合来自各种来源的信息(数据)是最好的方法。
因此,对于上述两点,我们明确认为需要为物联网和大数据分析采用基于云的系统。这从产品导向转向基于信息的结果导向。
底线
总而言之,物联网,大数据分析和云计算的融合利用了决策支持系统的新视野。此外,物联网,大数据分析和云计算的融合可以为所有行业提供新的机会和应用。对于目前正在研究单个技术的专业人员来说,这也将为他们提供出色的职业范围。
在Whizlabs,我们利用物联网,大数据分析和云计算领域的知识 以及 市场领先的认证指南,这些指南将有助于为专业人士获得理论和实践知识。认证指南经过精心设计,以确保在实际考试中取得成功。