汉诺塔问题

汉诺塔问题

相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置n个金盘。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。
在这里插入图片描述
一问:将n个金盘移到C杆上一共移动多少次?
二问:将n个金盘移到C杆上的过程。

问题分析:

以三个金盘为例:
第一步:将第一个金盘移到C杆
第二步:将第二个金盘移到B杆(辅助杆)
第三步:将第一个金盘从C杆移到B杆
第四步:将第三个金盘移到C杆
第五步:将第一个金盘从B杆移到A杆
第六步:将第二个金盘从B杆移到C杆
第七步,将第一个金盘从A杆移到C杆
如图:
在这里插入图片描述

当有n个金盘时,先将n-1个金盘移动到B杆(辅助),然后将第n个金盘移动到C杆;此时可以看作有n-1个金盘的汉诺塔问题,我们需要将n-2个金盘移动到A杆(辅助)上,然后将第n-1个金盘移动到C杆上。以此类推。所以我们可以用递归来解决这个问题。

代码:`

#include <stdio.h>

void Hanoi(int n,char A,char B,char C);

int main(){
	int n;
	char a='A',b='B',c='C';
	scanf("%d",&n);
	
	printf("Start move:\n");
	Hanoi(n,a,b,c);
}

void Hanoi(int n,char A,char B,char C){
	if(n==1){
		printf("%c--->%c\n",A,C);
	}
	else{
		//将前面n-1个金盘借助C柱移动到B柱上 
		Hanoi(n-1,A,C,B);
		//将第n个金盘移动到C柱上 
		printf("%c--->%c\n",A,C);
		//将剩下的n-1个金盘借助A柱移动到C柱上(进入n-1个金盘的Hanoi函数) 
		Hanoi(n-1,B,A,C);
		printf("\n");
	}
}

运行:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值