6049:买书 (完全背包方案数问题-二维+一维)

这篇博客介绍了如何使用动态规划解决一个完全背包问题,即用有限的钱购买不同价格的书籍,求解可能的购买方案数。题目描述给出了一种二维动态规划的解决方案,然后通过优化转换成一维动态规划。博主提供了输入输出样例,并解释了从二维到一维优化的思路,帮助读者理解动态规划的应用。
摘要由CSDN通过智能技术生成

题目描述:
小明手里有n元钱全部用来买书,书的价格为10元,20元,50元,100元。
问小明有多少种买书方案?(每种书可购买多本)

输入格式:
一个整数 n,代表总共钱数。(0 <= n <= 1000)

输出格式:
一个整数,代表选择方案种数

输入样例:
20

输出样例:
2

本题是一道完全背包的方案总数问题,在二维中
如果j<v[i],有f[i][j]=f[i-1][j]
否则j>=v[i],有f[i][j]=f[i-1][j]+f[i-1][j-v[i]]+f[i-1][j-2v[i]]+…
又f[i][j-v[i]] = f[i-1][j-v[i]]+f[i-1][j-2
v[i]]+f[i-1][j-3*v[i]]+…
比对上式,可知f[i][j]=f[i-1][j]+f[i][j-v[i]] (j>=v[i])

因此有二维下代码:

#include<iostream>
using namespace std;
const int N=1010;
int f[N][N];//f(i,j)前i种,表示钱数不超过j的情况下可以得到的种类数
int v[5];
int n;
int main(){
   
    cin>>n;
    v[1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值