雷电模拟器改真机保姆级教程,游戏搬砖党必备!

游戏工作室今天分享最新防封电脑模拟器改真机技术,适用于所有模拟器搬砖游戏,有效防止电脑模拟器封禁问题。

游戏搬砖玩家可以像使用真机一样流畅地操作游戏,电脑模拟器可以模拟真机的运行环境,让游戏服务器难以察觉到运行设备的差异,从而起到防封的作用更加安全。

重要提示:要多开模拟器,每个模拟器,都新建,并用以下方式操作。

1、首先要下载个雷电模拟器,如果已经下载过雷电模拟器,则不需要去下载。

雷电模拟器官方下载地址:https://www.ldmnq.com/

2、下载改真机文件。

图片

3、打开雷电多开器,新建一个模拟器,一定要新建,把刚刚下载的文件:模拟器改真机备份.ldbk 进行还原。

图片

4、点击备份/还原:

在这里插入图片描述

5、把下载好的模拟器改真机备份.ldbk 进行还原。要找到,你所下载该文件安装包位置,并进行还原。

图片

6、还原完成后启动模拟器

a.打开应用《MagiskDelta》

在这里插入图片描述

b.首次打开等待检查环境完成后,按照以下图中操作进行安装到Recovery,安装到Revovery完成后重启该模拟器。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

c.安装完成后重启模拟器

7、打开应用《微霸2023》,进行【一键改机】

在这里插入图片描述

a.第一步:选择需要运行的应用APP
b.第二步:抹除APP数据
c.第三步:模拟位置
d.第四部:点击一键改机
在这里插入图片描述

8、一键改机后的效果(【品牌】【型号】【串号(IMEI)】【SubscriberId】在后面需要用到)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

9、打开应用【爱玩机工具箱】
在这里插入图片描述

10、点击【Xposed专区】进入Xppsed专区
在这里插入图片描述

11、点击右上角【设置】,1.勾选【爱玩机-应用伪装】 2.然后点击【确定】

在这里插入图片描述
在这里插入图片描述

12、重新点击【Xposed专区】进入Xppsed专区,点击Xposed管理器的【爱玩机-应用伪装】

在这里插入图片描述

13、点击选择你安装的游戏版本【图中是梦幻手游,其它游戏版本自行下载然后选择】

在这里插入图片描述

14、在应用《微霸2023》,【一键改机】后的【品牌】【型号】【串号(IMEI)】【SubscriberId】输入到刚选择打开的【应用信息设置里】 的 手机厂商(品牌) 和 手机型号(型号) ,然后保存就好了。

在这里插入图片描述

15、最后重启模拟器,大功告成!

在这里插入图片描述

### YOLOv8 训练代码潜在错误分析 在检查 `ultralytics` 提供的 YOLOv8 模型训练代码时,需关注以下几个方面来判断是否存在可能的错误: #### 数据配置文件路径 数据集配置文件通常是一个 `.yaml` 文件,在代码中通过 `data` 参数指定。如果路径不正确或者文件不存在,则会引发异常。例如: ```python model.train(data='coco128.yaml', epochs=100, imgsz=640) ``` 上述代码假设当前工作目录下存在名为 `coco128.yaml` 的文件[^1]。如果没有找到该文件,程序可能会抛出 FileNotFoundError 或类似的错误。 #### 预训练模型加载方式 加载预训练模型的方式有多种可能性。以下是几种常见方法及其适用场景: - **从 YAML 定义创建新模型并加载权重** ```python model = YOLO('yolov8n.yaml').load('yolov8n.pt') ``` 此处需要注意的是,YAML 文件定义了网络结构,而 `.pt` 文件包含了实际的权重值。两者必须匹配,否则可能导致维度不一致等问题。 - **直接加载预训练模型** ```python model = YOLO('yolov8n.pt') ``` 这是最常用的方法之一,适用于大多数情况下的迁移学习任务。 #### 训练参数设置 对于训练过程中的超参数调整,以下是一些常见的选项以及它们的作用说明: - `epochs`: 总共迭代次数,默认为 100 轮。 - `imgsz`: 输入图像尺寸大小,默认为 640 像素。 - `batch`: 批量处理样本数量,默认情况下取决于硬件资源可用性[^2]。 另外还有其他可选参数如设备选择 (`device`) 和项目保存位置 (`project`) 等也可以自定义设定。 综上所述,只要确保所使用的各个组件之间相互兼容,并且所有必需输入都已正确定位提供给函数调用即可有效减少发生逻辑上的失误几率。 ```python from ultralytics import YOLO # 初始化模型 model = YOLO('yolov8n.yaml').load('yolov8n.pt') # 开始训练流程 model.train( data="path/to/your/coco128.yaml", # 替换为实际的数据集配置文件绝对路径 epochs=100, imgsz=640 ) ```
评论 137
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值