A1162. 汉诺双塔
时间限制:
1.0s 内存限制:
256.0MB
试题来源
NOIP2007 普及组
问题描述
给定A、B、C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。现要将这些圆盘移到C柱上,在移动过程中可放在B柱上暂存。要求:
(1)每次只能移动一个圆盘;
(2)A、B、C三根细柱上的圆盘都要保持上小下大的顺序;
任务:设A n为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出A n。
(1)每次只能移动一个圆盘;
(2)A、B、C三根细柱上的圆盘都要保持上小下大的顺序;
任务:设A n为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出A n。
输入格式
一个正整数n,表示在A柱上放有2n个圆盘。
输出格式
仅一行,包含一个正整数, 为完成上述任务所需的最少移动次数A
n。
样例输入
1
样例输出
2
样例输入
2
样例输出
6
数据规模和约定
对于50%的数据,1<=n<=25
对于100%的数据,1<=n<=200
对于100%的数据,1<=n<=200
提示
设法建立A
n与A
n
-1的递推关系式。
解析:设 f[i] 表示在将 i 个盘子从 1 个柱移动到另一个柱,并且中转柱只有一个的方案数,则:
f[i+1]= f[i] + 1 + f[i]
将i个盘子移到2号柱 将大盘移到3号柱 将2号柱上i个移到三号柱
==> f[i]=2*f[i-1]+1 , f[1]=1
==> f[i]=2^i-1
至于这道题,直接输出2*f[n]即可。
代码:
#include<cstdio>
using namespace std;
const int len=1e4;
const int maxn=100;
int ans[maxn];
void multi()
{
int i,last=0;
for(i=1;i<=ans[0];i++)
{
ans[i]=ans[i]*2+last;
last=ans[i]/len,ans[i]%=len;
}
if(last)ans[++ans[0]]=last;
}
int main()
{
int n,i;
scanf("%d",&n);
ans[0]=1,ans[1]=2;
for(i=1;i<=n;i++)multi();
ans[1]-=2; printf("%d",ans[ans[0]]);
for(i=ans[0]-1;i>=1;i--)printf("%04d",ans[i]);
return 0;
}