Count the Colors

ZOJ Problem Set - 1610
Count the Colors

Time Limit: 2 Seconds      Memory Limit: 65536 KB

Painting some colored segments on a line, some previously painted segments may be covered by some the subsequent ones.

Your task is counting the segments of different colors you can see at last.


Input

The first line of each data set contains exactly one integer n, 1 <= n <= 8000, equal to the number of colored segments.

Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:

x1 x2 c

x1 and x2 indicate the left endpoint and right endpoint of the segment, c indicates the color of the segment.

All the numbers are in the range [0, 8000], and they are all integers.

Input may contain several data set, process to the end of file.


Output

Each line of the output should contain a color index that can be seen from the top, following the count of the segments of this color, they should be printed according to the color index.

If some color can't be seen, you shouldn't print it.

Print a blank line after every dataset.


Sample Input

5
0 4 4
0 3 1
3 4 2
0 2 2
0 2 3
4
0 1 1
3 4 1
1 3 2
1 3 1
6
0 1 0
1 2 1
2 3 1
1 2 0
2 3 0
1 2 1


Sample Output

1 1
2 1
3 1

1 1

0 2
1 1



Author: Standlove

Source: ZOJ Monthly, May 2003

评测连接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1610

解法:裸的线段树,我是从1到n进行染色,用到一种被称为懒标记的优化方法。当然,从n到1倒着染色也可以。

用color[]来维护线段树中的节点,用点i+1来表示线段【i,i+1】,color[i]==-1代表线段未被染色,color[i]==-2代表线段上不止一种颜色,color[i]>=0代表线段只被color[i]颜色所染。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#define maxn (8000+100)
/*
  #define maxn 8000+100---->maxn*4==8000+100*4
  #define maxn (8000+100)---->maxn*4==(8000+100)*4
*/
using namespace std;

int n,last=-1,lasts=-1,cmax=0,dmax=0;
int x[maxn],y[maxn],c[maxn];
int sum[maxn],color[maxn*4];

void init()
{
  freopen("color.in","r",stdin);
  freopen("color.out","w",stdout);
}

void paint(int p,int pl,int pr,int l,int r,int s)
{
  if(l>r)return;
  if(l>pr || r<pl)return;
  if(l<=pl && pr<=r){color[p]=s;return;}
  int m=(pl+pr)>>1,k=p<<1;
  if(color[p]!=-2)//单需要对区间p进行一定改动时,才把p的信息传给子节点,俗称懒标记 
    {
      color[k]=color[k+1]=color[p];
      color[p]=-2;
    }
  if(l<=m)paint(k,pl,m,l,r,s);
  if(r>m)paint(k+1,m+1,pr,l,r,s);  
}

void find(int p,int l,int r)
{
  if(l>r)return;
  if(color[p]>=-1)
    {   //即使color[p]==-1,只是sum[-1]加1
      if(color[p]!=last)++sum[color[p]],last=color[p];
      return;
    }
  if(l==r)return; 
  if(color[p]!=-2)//这里也需要向下传标记,因为可能出现用到区间p1,但p1的父亲并未把节点 
    color[p<<1]=color[(p<<1)+1]=color[p];//信息向下传达,也就是p1线段应为颜色i,但查找时color[p1]却是等于-1的情况     
  int m=(l+r)>>1,k=p<<1;
  find(k,l,m),find(k+1,m+1,r);
}

void work()
{
  memset(sum,0,sizeof(sum));
  memset(color,-1,sizeof(color));
  int i;
  for(i=1;i<=n;i++)
    {//用点i+1代表线段[i,i+1]; 
      scanf("%d%d%d",&x[i],&y[i],&c[i]);x[i]++;
      cmax=max(cmax,c[i]); dmax=max(dmax,y[i]);
    }
  //染色 
  for(i=1;i<=n;i++)paint(1,1,dmax,x[i],y[i],c[i]);
  find(1,1,dmax);//记录每种颜色有多少段 
  for(i=0;i<=cmax;i++)if(sum[i])printf("%d %d\n",i,sum[i]); 
  printf("\n");
}

int main()
{
  init();
  while(scanf("%d",&n)!=EOF)work();
  return 0;  
}

Let 𝑃 be a set of 𝑛 points on the 𝑥-axis and each of the points is colored with one of the colors 1,2, . . . , 𝑘. For each color 𝑖 of the 𝑘 colors, there is at least one point in 𝑃 which is colored with 𝑖. For a set 𝑃 ′ of consecutive points from 𝑃, if both 𝑃 ′ and 𝑃 ∖ 𝑃 ′ contain at least one point of each color, then we say that 𝑃 ′ makes a double rainbow. See the below figure as an example. The set 𝑃 consists of ten points and each of the points is colored by one of the colors 1, 2, 3, and 4. The set 𝑃 ′ of the five consecutive points contained in the rectangle makes a double rainbow. Given a set 𝑃 of points and the number 𝑘 of colors as input, write a program that computes and prints out the minimum size of 𝑃 ′ that makes a double rainbow. Input Your program is to read from standard input. The input starts with a line containing two integers 𝑛 and 𝑘 (1 ≤ 𝑘 ≤ 𝑛 ≤ 10,000), where 𝑛 is the number of the points in 𝑃 and 𝑘 is the number of the colors. Each of the following 𝑛 lines consists of an integer from 1 to 𝑘, inclusively, and the 𝑖-th line corresponds to the color of the 𝑖-th point of 𝑃 from the left. Output Your program is to write to standard output. Print exactly one line. The line should contain the minimum size of 𝑃 ′ that makes a double rainbow. If there is no such 𝑃 ′ , print 0. The following shows sample input and output for two test cases.
最新发布
07-23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值