求组合数C(a,b) b<=a
如果使用朴素算法(根据公式直接求)
优化版: 利用动态规划(集合的思想)或者杨辉三角的规律
C(a,b)=C(a-1,b-1)+C(a-1,b)
这个式子既可以从杨辉三角的角度看 也可以从集合划分的角度看
从a个数中无序的选出b个数
我们将所有的选法看成一个集合
然后集合的属性我们关注的是选法的个数
如何划分这个集合呢?
我们以最后第k个数来看
它有两种情况 就可以将集合划分成两部分
①第k个数被选 即C(a-1,b-1) 已经知道第K个数被选了 这是一种确定的方案 根据乘法原理 第二步乘上剩下a-1个数中无序选b-1个数的方案 所有 第k个数被选可以表示成 C(a-1,b-1)
②第k个数不选 即C(a-1,b) 不选第k个数 是确定的第一步 方案只有1中就是不选它,第二步从剩下a-1个数中选出b个数(无序)
所以第k个数不选可以表示成 C(a-1,b)
最后这些划分加起来就是整个集合了
(加法原理)
C(a,b)=C(a-1,b-1)+C(a-1,b)
然后我们设定边界条件:C(x,0)等于1 没得选只有一种情况
否则就用上面这个递推公式了
#include <iostream>
using namespace std;
const int N=2100,mod = 1e9+7;
int c[N][N];
void init()
{
for(int i=0;i<N;i++)
for(int j=0;j<=i;j++)
if(!j)c[i][j]=1;
else c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod //对1e9+7取模 不超出这个范围
}
int main(void)
{
init();
int n;
cin>>n;
while(n--)
{
int a,b;
scanf("%d%d",&a,&b);
cout<<c[a][b]<<endl;
}
return 0;
}