Tiling POJ 2506 【大数】

http://poj.org/problem?id=2506


Description

In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? 
Here is a sample tiling of a 2x17 rectangle. 

Input

Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.

Output

For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle. 

Sample Input

2
8
12
100
200

Sample Output

3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251

做之前看看这个:http://blog.csdn.net/yuzhiwei1995/article/details/47909743

n==0时输出1 神数据,wa了n次这个地方


//贴两种大数进位方式

#include<stdio.h>
#include<string.h>
int a[300][2010];
void fun()
{
	int i,j;
	memset(a,0,sizeof(a));
	a[0][0]=1;
	a[1][0]=1;
	a[2][0]=3;
	int t;
	for(i=3;i<=260;++i)
	{
		int k=0;
		for(j=0;j<=2000;++j)
		{
			a[i][j] += a[i-1][j] + 2 * a[i-2][j];		
			if(a[i][j]>=10) 
			{
				a[i][j+1]=a[i][j]/10;
				a[i][j]%=10;
			}
		}
	}
}
int main()
{
	int n,i;	
	fun();
	while(~scanf("%d",&n))
	{
		for(i=2000;i>0&&a[n][i]==0;--i);
		for(;i>=0;--i)
			printf("%d",a[n][i]);
		printf("\n");
	}
	return 0;
}



#include<stdio.h>
#include<string.h>
int a[300][2010];
void fun()
{
	int i,j;
	memset(a,0,sizeof(a));
	a[0][0]=1;
	a[1][0]=1;
	a[2][0]=3;
	int t;
	for(i=3;i<=260;++i)
	{
		int k=0;
		for(j=0;j<=2000;++j)
		{
			t = a[i-1][j] + 2 * a[i-2][j] + k;
			k=t / 10;
			a[i][j]=t%10;
		}
	}
}
int main()
{
	int n,i;	
	fun();
	while(~scanf("%d",&n))
	{
		for(i=2000;i>0&&a[n][i]==0;--i);
		for(;i>=0;--i)
			printf("%d",a[n][i]);
		printf("\n");
	}
	return 0;
}


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值