约瑟夫问题

http://bailian.openjudge.cn/practice/2746/

2746:约瑟夫问题

总时间限制: 
1000ms 
内存限制: 
65536kB
描述
约瑟夫问题:有n只猴子,按顺时针方向围成一圈选大王(编号从1到n),从第1号开始报数,一直数到m,数到m的猴子退出圈外,剩下的猴子再接着从1开始报数。就这样,直到圈内只剩下一只猴子时,这个猴子就是猴王,编程求输入n,m后,输出最后猴王的编号。

输入
每行是用空格分开的两个整数,第一个是 n, 第二个是 m ( 0 < m,n <=300)。最后一行是:

0 0


输出 对于每行输入数据(最后一行除外),输出数据也是一行,即最后猴王的编号 样例输入
6 2
12 4
8 3
0 0
样例输出
5
1
7
//这是我已开始写的,模拟整个过程,后来发现还有个递推式
    
    
令f表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f=(f+m) mod i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f,程序也是异常简单:
//这里利用了循环的一个式子i=(i+1)%N 但i要从0开始 
#include <cstdio>
#include <cstring>
bool sign[330];
int main()
{
	int i,j;
	int N,M;
	while(scanf("%d%d",&N,&M),M+N)
	{
		memset(sign,1,sizeof(sign));
		j=0;
		for(i=1;i<N;++i)
		{
			int cnt=0;
			while(cnt!=M)
			{
				if(sign[j])				
					cnt++;
				if(cnt==M) 
					sign[j]=0;
				j=(j+1)%N;			
			}
			
		}
		for(int i=0;i<N;++i)
		{
			if(sign[i]) printf("%d\n",i+1);
		}
	}
	return 0;
}



 
  
#include <cstdio>
#include <cstring>
int cal(int n,int m)
{
    int s=0;
    for(int i=2;i<=n;i++)
        s=(s+m)%i;//如果s从1开始,则(s+m-1)%i+1
    return s;
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m),m+n)
    {
        printf("%d\n",cal(n,m)+1);           
    }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值