建议收藏,5 种亲测有效访问满血版DeepSeek使用方案(附保姆级教程)

官方是否经常繁忙,用户量激增导致服务器过载(日活突破500万)。

别担心,这些免费访问 DeepSeek 满血版的方式,助你 AI 探索的一臂之力。

方案响应速度上手难度适用人群
第三方APP⚡️⚡️⚡️⚡️🌟手机党/小白用户
API直连⚡️⚡️⚡️⚡️⚡️🌟🌟🌟开发者/技术爱好者
本地部署⚡️⚡️⚡️⚡️⚡️🌟🌟🌟🌟极客/企业用户
镜像网站⚡️⚡️⚡️🌟🌟临时应急
参数优化⚡️⚡️🌟🌟🌟🌟🌟企业/AI从业者

1 AskManyAI

推荐指数: 🌟🌟🌟🌟🌟

  • 使用地址:https://askmanyai.cn/login

👉 操作步骤:

注册进入 AI 工作台,默认勾选了 DeepSeek-R1 联网版 和 DeepSeek-R1 满血版

💡特点:满血版免费,能够同时选中多个 AI 模型进行访问,对比不同的 AI 结果

缺点:需要关注公众号才能获取注册码

在这里插入图片描述

2 纳米 AI 搜索

推荐指数:🌟🌟🌟🌟🌟

📱APP 端和网页端都能免费使用,体验方式:

  • 网页链接:https://bot.n.cn/

网页版截图如下:

在这里插入图片描述

Ps:建议选择最新的 DeepSeek-R1联网满血版

👉 手机端操作步骤:

1️⃣ 应用商店搜索「纳米AI 搜索」安装(认准红色 LOGO)

在这里插入图片描述

或者通过扫描下面的手机端下载注册二维码:

在这里插入图片描述

2️⃣ 打开APP→左下角「AI搜索」→选择「DeepSeek专线」
3️⃣ 点击「DeepSeek-R1-联网满血版」标识(进入对话框即为成功)

在这里插入图片描述

3 硅基流动(siliconflow)

推荐指数: 🌟🌟🌟🌟,支持众多模型

💡 特点: API 直连满血版,更适合开发者,尤其预算敏感或者需要集成多模型的开发者

使用方式: 调用方式与 OpenAPI 接口一致,开发者可以无缝迁移代码。

使用场景: 企业搭建 AI 助手、独立开发各种 AI 应用

在这里插入图片描述

目前注册就送 2 千万 Token,推荐一下我的注册链接:

https://cloud.siliconflow.cn/i/V5dNv0xi

👉 API 使用步骤

  1. 注册并获取 API 密钥
  2. 配置客户端、网页插件(如 ChatBox、Cursor AI),填入你的 API 密钥和服务地址
  3. 开始使用

4 秘塔 AI 搜索

推荐指数: 🌟🌟🌟🌟🌟

使用地址 :https://metaso.cn/

使用步骤: 选择“长思考-R1”,就会使用的 DeepSeek-R1 模型。

特点: AI 搜索,适用小白,无需注册,界面简单(类似百度、必应等网页搜索框)

缺点: 模型可能不是满血版,思考过程不及前面的使用方式

在这里插入图片描述

5 其他方式

最近,DeepSeek着实火出了圈!如今,众多 API 或聚合 AI 搜索工具,都忙着拿接入 DeepSeek 当作宣传噱头,热度居高不下。

大家都知道,天下没有免费的午餐。DeepSeek 当前的免费使用,确实给用户带来了不少实惠,可未来呢?前期的免费或补贴,就像诱人的开胃菜,之后会不会悄然变味,谁也说不准。

看看国内华为云昇腾云服务、阿里云百炼、字节火山引擎、百度云千帆、国家超算互联网平台。

国外英伟达 NIMPOEFireworks AIGroqCloud(70B)这些。

但我就不在这里一一详细汇总了,毕竟“少即是多”,有时候信息精简反而更有力量。再说,真正对这些感兴趣的高手,就算不看我这篇教程,搭建和使用起来也是轻车熟路。

话说回来,科技世界日新月异,我相信肯定还有不少藏在角落里的“宝藏”工具。要是你发现了更好用的工具,不妨在留言区分享一下。我一有空,就把大家的推荐汇总整理出来,咱们一起探索更广阔的 AI 天地!

欢迎关注《宇宙之一粟》,一起学习 DeepSeek,一起学习 AI !

<think>嗯,用户想要在Windows本地部署DeepSeek保姆教程。首先,我需要确认DeepSeek具体指的是什么。因为DeepSeek可能有不同的应用,比如是深度学习框架、某个特定项目,还是公司提供的工具。假设这里指的是深度求索公司的某个AI模型,比如类似ChatGPT的大语言模型。这时候,我需要考虑用户可能的需求:他们可能想在自己的Windows电脑上部署一个类似ChatGPT的本地模型,用于开发或试。 接下来,用户可能对技术不太熟悉,所以教程必须详细,每一步都要清晰。需要分步骤讲解,包括环境准备、依赖安装、模型下载、配置和运行试。同时,用户可能遇到的问题,比如Python环境配置、GPU支持、模型文件过大等,需要提前预警并提供解决方案。 首先,安装Python环境。推荐使用Anaconda,因为它能方便地管理虚拟环境。要指导用户下载安装,并创建专用环境。然后安装PyTorch,这里需要注意CUDA本,如果用户有NVIDIA显卡,可以加速计算,否则只能用CPU本,但速度会慢很多。需要判断用户是否有GPU,但教程里应该涵盖两种情况。 然后,模型下载。可能涉及到Hugging Face平台,需要指导用户注册账号,安装git-lfs,下载模型文件。这里可能会有网络问题,国内用户可能需要镜像或者代理,可能需要提示。另外,模型文件通常很大,需要足够的存储空间,比如几十GB,这点要提醒用户。 接下来是代码部分,可能需要从GitHub克隆项目,安装依赖库,比如transformers、torch等。需要检查代码示例是否正确,比如使用AutoModelForCausalLM和AutoTokenizer加载模型,并编写推理代码。注意提醒用户替换模型路径,并根据显存调整batch_size和max_length。 运行部分,可能会遇到内存不足的问题,尤其是没有GPU的用户。需要建议他们使用较小的模型或者减少输入长度。此外,可能存在的错误如缺少库,需要提示安装。 最后,优化和常见问题,比如量化、使用GPU技巧,以及回答可能的疑问,比如是否需要互联网连接,模型是否能微调等。 需要确保教程用词简单,避免专业术语过多,步骤明确,适合新手。同时,检查是否有遗漏的步骤,比如git-lfs的安装,环境变量的设置,或者权限问题。可能还需要提供示例代码,确保用户能直接复制粘贴,并验证代码的正确性。 总结,整个教程需要从环境准备开始,逐步引导用户完成每个步骤,预见到常见问题并给出解决方案,确保用户即使遇到问题也能找到解决办法。同时,提醒用户注意硬件需求和下载时间,避免中途放弃。</think>以下是在 **Windows 系统本地部署 DeepSeek 模型(如 DeepSeek-R1 或类似大语言模型)的详细步骤教程,适合新手操作**: --- ### **一、环境准备** 1. **安装 Python** - 访问 [Python官网](https://www.python.org/downloads/),下载最新 **Python 3.10+**。 - 安装时勾选 `Add Python to PATH`,确保环境变量配置正确。 - 验证安装:打开命令提示符(CMD),输入 `python --version`,显示本号即成功。 2. **安装 CUDA 和 cuDNN(仅限NVIDIA显卡用户)** - 如果有NVIDIA显卡,安装 **CUDA Toolkit 11.8** 和对应本的 **cuDNN**(加速GPU推理)。 - 参考NVIDIA官方教程配置:[CUDA安装指南](https://developer.nvidia.com/cuda-toolkit)。 3. **安装 Git 和 Git LFS** - 下载 [Git for Windows](https://git-scm.com/download/win),安装时全部默认选项。 - 安装后打开CMD,运行命令安装Git LFS(用于下载大模型文件): ```bash git lfs install ``` --- ### **二、获取模型文件** 1. **从Hugging Face下载模型** - 访问DeepSeek官方HF仓库(如 [deepseek-ai/deepseek-llm-7b-chat](https://huggingface.co/deepseek-ai))。 - 点击“Clone repository”复制模型地址(需注册HF账号并登录)。 - 在本地文件夹打开CMD,运行: ```bash git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat ``` - 等待下载完成(模型可能超过20GB,确保磁盘空间充足)。 2. **备选方案:国内镜像加速** - 如果下载慢,可使用[魔搭社区(ModelScope)](https://modelscope.cn/models?search=deepseek)或代理工具。 --- ### **三、创建Python虚拟环境** 1. **使用conda创建环境(推荐)** ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` 2. **安装PyTorch** - 根据CUDA本选择命令(无GPU则用CPU本): ```bash # CUDA 11.8 pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # 仅CPU pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` 3. **安装依赖库** ```bash pip install transformers sentencepiece accelerate huggingface_hub ``` --- ### **四、编写推理代码** 1. **创建 `run.py` 文件** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "D:/deepseek-llm-7b-chat" # 替换为你的模型路径 tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True) prompt = "你好,请介绍一下你自己。" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 2. **调整参数(可选)** - 显存不足时,在 `from_pretrained` 中添加参数:`load_in_4bit=True`(4位量化)或 `load_in_8bit=True`。 --- ### **五、运行模型** 1. **启动推理** ```bash python run.py ``` - 首次运行会自动加载模型,可能需要等待数分钟。 - 如果显存不足,尝试减少 `max_new_tokens` 或使用更小模型(如1.3B本)。 --- ### **六、常见问题** 1. **CUDA内存不足** - 使用CPU运行:修改代码中的 `device_map="cpu"`。 - 启用量化(需安装 `bitsandbytes` 库): ```bash pip install bitsandbytes ``` 2. **模型加载失败** - 检查模型路径是否正确,确保所有模型文件已下载完整(尤其是`.bin`和`.json`文件)。 3. **网络问题** - 国内用户可使用镜像源加速下载: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple [包名] ``` --- ### **七、进阶优化** - **使用vLLM加速推理**(需GPU): ```bash pip install vllm from vllm import LLM, SamplingParams llm = LLM(model=model_path) ``` - **Web界面交互**: 部署类似 [text-generation-webui](https://github.com/oobabooga/text-generation-webui) 的交互式界面。 --- 通过以上步骤,你可以在Windows本地成功运行DeepSeek模型。如果遇到问题,建议查阅模型官方文档或社区讨论(如Hugging Face、GitHub Issues)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值