以下是DPABI软件中rs-fMRI预处理的完整流程及其关键要素的详细说明:
一、DPABI软件基础配置
- 安装与启动
- 下载DPABI工具箱(支持Windows 10 Pro、MacOS、Linux),将其路径添加到MATLAB环境变量中,输入命令
dpabi
启动图形界面。 - 支持独立运行(无需MATLAB)或通过Docker容器执行批处理脚本。
- 下载DPABI工具箱(支持Windows 10 Pro、MacOS、Linux),将其路径添加到MATLAB环境变量中,输入命令
- 版本特性
- DPABI V5.1及以上版本整合了AAL3脑模板和BrainImageNet模块,支持基于结构影像的性别预测和阿尔茨海默病分类。
- 新增DPABISurf模块(基于表面的分析)和fMRIPrep后端,优化了多会话数据处理。
二、rs-fMRI预处理核心流程
1. 数据准备
- 格式转换:将原始DICOM格式转换为NIfTI格式(支持3D或4D文件),确保数据兼容性。
- 剔除初始时间点:去除前5-10个时间点(通常前10个),消除磁场不均匀性和被试适应期的干扰。
2. 时间层校正(Slice Timing Correction)
- 目的:校正因层间采集时间差异导致的信号错位。
- 参数设置:需输入重复时间(TR)、层数(如32层)、扫描顺序(如隔层升序/降序),并指定参考层(通常为中间层)。
3. 头动校正(Realignment)
- 方法:采用刚体变换对齐所有时间点到第一帧图像,生成头动参数(平移X/Y/Z,旋转Roll/Pitch/Yaw)。
- 质量控制:排除头动过大被试(平移>2-3 mm,旋转>2-3°),计算帧位移(Frame Displacement, FD)和平均FD(阈值通常为FD < 0.2-0.5)。
4. 结构像(T1)处理
- 配准与分割:将T1像与功能像配准,分割为灰质(GM)、白质(WM)、脑脊液(CSF),用于后续去噪。
- 标准化:将结构像配准至MNI标准空间,提高跨被试一致性。
5. 空间标准化(Normalization)
- 方法:使用EPI模板或T1像的DARTEL算法,将功能像映射到MNI空间,重采样体素(如3×3×3 mm³)。
- 质量控制:检查标准化后的脑区对齐情况(如灰质边界与模板匹配度)。
6. 空间平滑(Smoothing)
- 参数:高斯核半高宽(FWHM)通常为4-8 mm(如6 mm),平衡信噪比与空间细节。
- 例外情况:生成ReHo(Regional Homogeneity)图时省略平滑步骤。
7. 无关变量回归(Nuisance Regression)
- 协变量:回归24个头动参数(Friston模型)、全脑平均信号、WM信号、CSF信号及线性漂移。
- 去线性漂移:消除设备或生理因素引起的基线漂移。
8. 滤波(Bandpass Filtering)
- 频带范围:保留低频振荡信号(通常0.01-0.10 Hz),部分研究选择0.01-0.08 Hz以减少高频噪声。
- ALFF/fALFF处理:计算低频振幅(ALFF)时需保留滤波步骤。
三、质量控制指标
- 头动参数:平移(X/Y/Z)和旋转(Roll/Pitch/Yaw)的均方根(RMS)及最大位移。
- 帧位移(FD) :逐帧头动指标,用于排除头动过大的时间点或被试。
- 信号噪声比(SNR) :评估预处理后信号质量,高SNR表示低噪声干扰。
- 空间标准化检查:通过QC界面可视化配准效果,确保脑区与MNI模板对齐。
- 协变量回归效果:通过时间序列相关性分析验证噪声信号(如WM/CSF)的去除效果。
四、操作注意事项
- 数据组织:需按标准目录结构存放功能像(FunImg)和结构像(T1Img),避免路径错误。
- 参数灵活性:平滑核大小、滤波频带等参数需根据研究目的调整(如临床研究可能选择更宽松的头动阈值)。
- 批处理与并行计算:支持Docker脚本或MATLAB并行处理,提升大规模数据效率。
五、后续分析模块
- 功能连接(FC) :基于预处理数据计算脑区间的相关性。
- 局部一致性(ReHo) :分析体素局部邻域的时间序列同步性。
- ALFF/fALFF:量化低频振荡振幅,反映脑区自发活动强度。
- VMHC(Voxel-Mirrored Homotopic Connectivity) :评估半球间镜像体素的功能连接。
六、常见问题与解决
- 格式错误:将4D NIfTI文件转换为3D格式以避免预处理中断。
- 配准失败:检查T1像与功能像的分辨率差异,必要时手动调整配准参数。
- 滤波选择:ALFF分析需保留滤波步骤,而ReHo计算可能省略。
七、总结
DPABI通过高度自动化的图形界面和标准化流程,显著降低了rs-fMRI预处理的复杂性,同时提供灵活的参数设置和严格的质量控制工具。其整合的BrainImageNet模块和DPABISurf扩展,进一步支持多模态分析与临床转化研究。用户需根据实验设计调整参数,并通过QC指标确保数据可靠性,为后续统计分析奠定基础。