【泉州信息毕业论文】基于Python的客家方言语音识别系统的设计与实现

注:仅展示部分文档内容和系统截图,需要完整的视频、代码、文章和安装调试环境请私信up主。

基于Python的客家方言语音识别系统的设计与实现

摘要

本文介绍了一种基于Python的客家方言语音识别系统的设计与实现。客家方言是中国重要的民族文化遗产,但其音系复杂、浊音丰富,给语音识别带来了巨大挑战。本项目旨在设计一种高效准确的客家方言语音识别系统,以提高方言保护和客家文化的传承。

本项目采用了Python语言,使用了声学表示和语言模型的方法。首先,我们开展了声学特征提取的研究,比较了不同算法在客家方言语音识别上的表现。然后,我们设计了一个客家方言语言模型,该模型采用了基于深度学习的语音识别技术,能够高效地对客家方言进行识别。最后,我们将声学表示和语言模型相结合,实现了一个功能齐全的客家方言语音识别系统。

在本次实现中,采用了Python作为后端开发语言,并运用了一系列常用的声学表示技术和语音识别算法,使用学习算法进行模型的训练。以更好地解决语音识别中的问题。通过本项目,成功地开发了一个高效准确的客家方言语音识别系统,并证明其在客家文化保护上的重要作用。

关键字:语音识别;系统设计;python;客家方

目录

摘要

ABSTRACT

1  前言

1.1  研究背景和研究意义

1.1.1研究背景

1.1.2研究意义

1.2  国内发展及研究现状

1.3  研究内容

1.4  本章小结

2  相关技术介绍

2.1  系统的开发工具

2.2  python语言

2.3  MYSQL数据库

2.4  PyAudio库

2.5  深度学习

2.6  本章小结

3  系统分析

3.1  系统的可行性分析

3.1.1  经济可行性

3.1.2  技术可行性

3.1.3  操作可行性

3.1.4  法律可行性

3.2  系统用例分析

3.3  系统用例描述

3.4  本章小结

4  系统设计

4.1  系统设计原则

4.2系统架构

4.3  系统流程设计

4.3  系统数据库设计

4.4  语料库建设设计

4.5  语料的选取

4.6  方言样本录制

4.6.1  发音人选择

4.6.2  语料釆集方法

4.6.3  釆集过程问题及难点

4.7  本章小结

5  系统功能的实现

5.1  基于TensorFlow深度学习框架体系

5.2实现过程

5.2.1环境准备

5.2.2数据处理

5.2.3数据处理

5.3  语音识别模块

5.4  语音模型训练模块

5.5  选取语音界面模块

6  客家方言语音识别准确性测试

6.1  测试目的

6.2  测试计划

6.3  测试用例

6.4  本章小结

7  全文总结

7.1  安全与环保问题分析

7.1.1安全问题分析 33

7.1.2环保问题分析 34

7.2  技术经济与成本分析

7.2.1技术经济分析 35

7.2.2成本分析 35

7.3  论文总结

7.4  展望

参考文献

致谢

1  前言

1.1  研究背景和研究意义

1.1.1  研究背景

近年来,随着人工智能的发展和应用,语音识别技术已经逐渐成为了关键性的人机交互重要技术之一。客家方言是我国广泛使用的方言之一,在各种语境中应用广泛,而客家方言语音识别技术的研究也日益受到重视。在这个背景下,基于Python的客家方言语音识别系统的研究也逐步得到了关注和发展。客家方言与普通话等官方语言相比,拥有更多的声调和词汇发音差异,同时其发音也有很大的差异,因此现有的语音识别技术很难直接应用于客家方言语音识别。为解决这个问题,一些研究人员开始探索开发针对客家方言的语音识别系统,以提高语音交互系统的效果和用户体验[1]。在Python的强大支持下,研究人员可以基于相关的开源语音处理库和算法,进行功能的开发和数据分析。随着近年来机器学习和深度学习技术的快速发展,客家方言语音识别系统的研究也得到了较大的提升。通过深度学习算法的使用,科研人员可以对客家方言语音信号中的声学特征进行分析和提取,并对音频数据进行预处理,然后训练模型以预测客家方言单词/音节的语音结果。

在基于Python的客家方言语音识别系统的研究中,还有一些具体的问题需要关注和解决,例如语音信号的预处理、特征提取、数据标注方法等,这些问题也在不断被研究和改进。基于Python的客家方言语音识别系统的研究背景是多方面的,包括客家方言本身的特点、机器学习和深度学习技术的快速发展和Python语言的方便和强大。在这个背景下,相关的研究和技术应用的发展也将对未来的语音交互技术发展产生重要的影响。 

2  相关技术介绍

2.1  系统的开发工具

操作网站:Windows10

开发平台:pycharm

数据库:mysql

开发语言:python

2.2  python语言

Python是一种高级编程语言,由Guido van Rossum在1989年底发明并逐渐发展而来。Python的设计注重强制代码的可读性和简洁性,其语言特性使得Python适合于处理大数据、人工智能和科学计算等领域,也因为其易学易用、可移植性和良好的社区支持而成为最受欢迎的编程语言之一。Python的语法简单直观,容易读懂和维护,代码块的缩进使得Python的代码格式更加规范。Python支持多范式编程,也就是说可以使用面向对象、函数式、过程式等不同的编程风格。Python有很多流行的框架和库,例如Django、Flask、Numpy、Scipy、TensorFlow、PyTorch等,在科学计算、人工智能、网络开发等领域都有广泛应用。这些框架和库大大简化了程序员的工作,使得快速开发高效程序成为可能。Python的解释器可以在多个操作系统中运行,例如Windows、Linux、macOS等。它的跨平台性使得Python成为开源生态系统中的核心语言,也使得Python在不同平台的应用和开发过程中更加流畅。

2.4  PyAudio库

PyAudio库是Python语言下的音频处理库,它可以实现音频的录制、播放、处理等功能。在基于Python和百度AI语音识别API的语音识别系统中,PyAudio库是必不可少的。通过PyAudio库,我们可以实现录音功能,将用户输入的语音数据进行采集和处理,为后续的语音识别做准备。

PyAudio库中,主要使用了两个类:PyAudioStreamPyAudio类可以用于创建和管理音频设备,Stream类可以用于音频的录制和播放。在实现录音功能时,我们通常使用Stream类来进行音频的录制。

2.5  深度学习

深度学习(Deep Learning)是机器学习中的一个分支,它是人工智能领域中比较有前途的一种技术。深度学习的概念起源于人工神经网络(Artificial Neural Network,ANN)的研究,ANN是一种模仿生物神经元结构的神经网络[4],通过多个隐含层进行信息处理的数学模型,它是一种基于深度学习的学习方法。包含若干隐藏层的多层感知器是一种深度学习的结构,它采用多层非线性变换相结合的方法来调节内部神经元间相互关联的权重和偏置以获得数据分布式的特征表示,将原本需要进行海量结果标注的特征添加到可以训练的分类器中,成为多种能够学习到隐藏在数据后面各因素和相互关系的可训练特征提取器。同时深度学习也是表示学习的形式之一,表示学习能够处理先验经验较少的数据中特征的自动学习问题,从而实现原本需要经过大量经验特征才能够获得的效果。

5.2实现过程

系统实现过程主要包括环境准备、训练集数据处理、语音特征提取、模型结构定义、 模型训练的过程语音识别、选取语音界面。

5.2.1环境准备

实现过程首先要搭建基础的系统环境,本系统主要利用TensorFlowpython版本。进行python环境的搭建,在Mac OS环境下是已经默认安装python2,由于TensorFlow python3的支持更好,且由于自身更熟悉python3,选择了安装Anaconda, Anaconda python科学计算环境,它可以更方便地进行包的安装与管理及多版本并存管理。安装 TensorFlowCPU版本,它有多种安装形式,本系统使用本地pip安装,只需要输入“sudo pip3 install tensorflow”命令即可,安装成功后,进行简单验证是否成功。根据系统实现 设计要求,再安装其他相关包,如ctc包。

5.2.2数据处理

搭建好系统环境后,须对系统模型训练的数据集进行处理,本实验主要利用的数据集主要为本文中第四章录制的客家方言语音语料库,共10035段客家语音音频,为了增加模型的鲁棒性,增加了部分噪音环境下的语料。

根据训练集的语音文件,制作对应的训练集文本标签:train.word.txto将每个数据 集中语音、标签按照以下格式组织整理好:

1、音频储存位置:/wav/train/xxxx.wav (训练集)

2、音频对应的文本位置:/wav/train.word.txt 训练集)

5.2.3数据处理

依据系统设计流程,组织好训练集后,进行语音特征的提取工作,为了使深度神经 网络模型更好地识别音频信号,输入神经网络的数据要从时域转成频域。如第三章特征 提取小节所述,语音特征提取方法有多种,本文使用基于人耳听觉非线性特性的梅尔频 率倒谱系数(MFCC)。

MFCC的转换流程为:

1、对语音信号进行预处理,加强信号的信噪比、精度等性能,通常要进行预加重、 分帧、加窗操作;

2、对每一个短时的分析窗,通过FFT得到对应的频谱,为了获取分布在时间轴上 不同时间窗内的频谱;

3、把不同时间窗内的频谱通过Mel滤波器组将自然频谱转换为能体现人类听觉特征的Mel频谱

4、在Mel频谱上取对数、逆变换(通过DCT离散余弦变换),进行倒谱分析,获 取Mel频率倒谱系数,这个系数就是这帧语音的特征。

7.2  技术经济与成本分析

基于Python的客家方言语音识别系统一种新兴的技术,其技术经济和成本分析如下:

7.2.1  技术经济分析

技术优势

基于Python的客家方言语音识别系统具有以下技术优势:

(1)开源免费:Python语言是一种开源免费的编程语言,可以降低系统的开发成本;

(2)易学易用:Python语言具有简单易学、易用性强的特点,可以提高开发效率;

(3)可扩展性强:Python语言具有良好的可扩展性,可以方便地进行二次开发和扩展;

(4)支持多种平台:Python语言可以在多种平台上运行,如Windows、Linux等

技术劣势

基于Python的客家方言语音识别系统也存在一些技术劣势:

(1)速度较慢:Python语言的执行速度较慢,不适合处理大规模数据;

(2)内存占用较高:Python语言的内存占用较高,需要较大的内存空间。

7.2.2  成本分析

开发成本

基于Python的客家方言语音识别系统的开发成本主要包括人力成本和硬件成本。人力成本包括开发人员的薪酬和培训成本,硬件成本包括开发所需的计算机、服务器等设备[15]。由于Python语言具有易学易用、开源免费的特点,因此开发成本相对较低。

综上所述,基于Python的客家方言语音识别系统具有开发成本较低、易扩展、易维护等优势,但也存在速度较慢、内存占用较高等劣势。在成本方面,其开发成本相对较低,运营成本也相对较低,具有一定的经济性。

7.3  论文总结

本文主要写在网站设计的几个步骤中。首先,必须简要介绍研究背景、意义和开发方法。然后简要介绍了开发环境和开发网站所需的几种技术。技术支持对于开发小型程序至关重要,因此本章更为重要。在技术引进之后,我们需要进行一些必要的分析,主要包括可行性分析、数据分析、需求分析和小方案的维护分析。在制作网站时,合理的分析和计划是必不可少的,所以我们应该列出各种分析的简单清单。分析之后,是网站的设计。在他们自己的设计中,应该能够体现出他们对于网站开始想要提供的一些功能,并且应该给出是如何实现这些功能的以及使用这些功能的手段。本文重点介绍了网站的设计原理、工作原理、功能操作过程和数据库设计。在第四章中,通过对于本网站用到的数据库进行了描述,其次就是对于网站的结构,从而可以清晰的给读这篇论文的人一个清晰的画面感。第五章的话,重点介绍了关于网站的一些功能是如何表现出来的,在这个过程中可以让看这篇论文的人在本章中对网站的实现页面有一个切身的体会。设计完成后,对网站进行了测试。测试是软件生产后必不可少的过程,它可以使网站在未来的运行中更加稳定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值