《数据结构与算法分析》搜索二叉树详解

前言:

二叉树这一章的内容实现相对于上一章难多了,不仅仅是想明白就一定能立刻写出来,实现的时候会遇上许多没有考虑周到的问题,需要在实现的时候再选择一个合适的解法。并且在编码完之后,进行调试的时候,同样会遇到许多问题,比如树断裂了,对NULL指针进行了访问,等等。这些问题都需要细心的好好检查,调试,解决。这一章的博客本来上一周就该更新,不过为了实现这些头疼的树,让我拖到了现在。

我的github:

我实现的代码全部贴在我的github中,欢迎大家去参观。

https://github.com/YinWenAtBIT

原理:

二叉树:

二叉树(Binary Tree)的特点是每个结点至多具有两棵子树(即在二叉树中不存在度大于2的结点),并且子树之间有左右之分。

    (1)、在二叉树的第i层上至多有2i-1个结点(i≥1)。

    (2)、深度为k的二叉树至多有2k-1个结点(k≥1)。

    (3)、对任何一棵二叉树,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。

二叉查找树:

         BinarySearchTree,也叫二叉搜索树,或称二叉排序树(Binary Sort Tree),是具有下列性质的二叉树:

    (1)、若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值;

    (2)、若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值;

    (3)、它的左、右子树也分别为二叉查找树

 操作:

插入:

二叉查找树的插入过程如下:1.若当前的二叉查找树为空,则插入的元素为根节点,2.若插入的元素值小于根节点值,则将元素插入到左子树中,3.若插入的元素值不小于根节点值,则将元素插入到右子树中。

SearchTree Insert(ElementType X, SearchTree T)
{
	if(T ==NULL)
	{
		T = (SearchTree)malloc(sizeof(TreeNode));
		T->Element = X;
		T->lchild = T->rchild = NULL;

	}
	else if(X< T->Element)
	{
		T->lchild = Insert(X, T->lchild);
	}
	else if(X>T->Element)
	{
		T->rchild = Insert(X, T->rchild);
	}
	return T;

}

删除:

删除的操作也是需要先找到节点,1.当前节点小于要删除的数据时则走向右子树;2.当前节点大于要删除的数据则走向左子树3.找到数据后删除。

我的实现方式为递归删除,找到的节点若有左右两个子树,则拿右子树的最小值代替该节点,再删除又子树的最小值。

/*递归删除*/
SearchTree Delete(ElementType X, SearchTree T)
{
	Position tempCell;
	if(T ==NULL)
	{
		perror("Element not Found");
		return NULL;
	}
	if(X< T->Element)
		T->lchild = Delete(X, T->lchild);
	else if(X> T->Element)
		T->rchild = Delete(X, T->rchild);
	else
	{
		/*找到的树节点如果有两个孩子的话就用它右子树的最大值代替该点,再删去右子数上的最大值*/
		if(T->lchild && T->rchild)
		{
			tempCell = FindMin(T->rchild);
			T->Element = tempCell ->Element;
			T->rchild = Delete(T->Element, T->rchild);
		}
		else 
		{
			tempCell = T;
			if(T->lchild ==NULL)
				T = T->rchild;
			else
				T = T->lchild;
			free(tempCell);
		}
	}
	return T;

}
寻找:

寻找操作利用查找二叉树左小右大的性质,非常容易实现,我使用递归的方式实现查找,非递归的方式实现寻找最大最小值

Position Find(ElementType X, SearchTree T)
{
	if(T == NULL)
		return NULL;

	if(T->Element == X)
		return T;
	else if(X <T->Element)
		return Find(X, T->lchild);
	else
		return Find(X, T->rchild);
}

/*非递归查找最小值*/
Position FindMin(SearchTree T)
{
	if(T!=NULL)
	{
		while(T->lchild !=NULL)
			T = T->lchild;

		return T;
	}
	return NULL;
}

/*非递归查找最大值*/
Position FindMax(SearchTree T)
{
	if(T!= NULL)
	{
		while(T->rchild !=NULL)
			T= T->rchild;

		return T;
	}
	return NULL;
}

总结:

二叉查找树是树结构中最基础的一种,只有完全理解并且能实现它之后,才能做好之后的更难的树的实现。该树由于不能保持左右的平衡,所以实际上不能直接拿来使用,需要进一步改进。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值