《AI大模型趣味实战》教10岁儿童使用Python调用智谱AI大模型创建图形化AI聊天机器人的教程

教10岁儿童使用Python调用智谱AI大模型创建图形化AI聊天机器人的教程

引言

在人工智能快速发展的今天,让孩子们接触和学习AI技术变得越来越重要。本教程专为有一定Python基础的10岁儿童设计,将引导孩子们如何使用Python调用智谱AI的免费大模型GLM-4-Flash,并创建一个图形化界面的AI聊天机器人。通过这个项目,孩子们不仅能学习到Python编程的高级应用,还能了解人工智能的基本原理,培养他们对前沿科技的兴趣和创新能力。

课程目标

  1. 学习Python图形用户界面(GUI)编程基础
  2. 了解如何注册和使用智谱AI的免费API
  3. 掌握调用大模型API的基本方法
  4. 实现一个简单的AI聊天机器人图形界面应用
  5. 培养解决实际问题的能力和创新思维

在这里插入图片描述

课程准备

硬件需求

  • 一台可以上网的电脑
  • 足够的存储空间用于安装必要的软件和工具

软件需求

  • Python 3.x(可以从官方网站下载)
  • PySimpleGUI库(用于创建GUI界面)
  • 智谱AI API(免费版)

先备知识

  • 基础的Python语法知识
  • 简单的变量、条件语句和循环结构理解
  • 基础的文本文件操作能力

第一部分:PySimpleGUI基础

什么是PySimpleGUI?

PySimpleGUI是一个Python GUI编程库,它的目标是让创建图形用户界面变得简单而快速。它提供了一种简单而直观的方式来创建桌面应用程序,无需繁琐的代码或复杂的GUI框架[11]。
对于10岁的孩子来说,PySimpleGUI是一个理想的选择,因为它:

  • 简化了GUI开发过程
  • 代码量少,相比其他框架可减少50%到90%[12]
  • 易于学习和使用

安装PySimpleGUI

首先,我们需要安装PySimpleGUI库。这可以通过Python的包管理工具pip来完成。

pip install pysimplegui

创建第一个PySimpleGUI窗口

让我们从一个简单的"Hello World"窗口开始,帮助孩子们理解PySimpleGUI的基本结构。

import PySimpleGUI as sg
# 定义窗口的布局
layout = [
    [sg.Text("Hello, AI World!")],
    [sg.Button("退出")]
]
# 创建窗口对象
window = sg.Window("我的第一个AI聊天机器人", layout)
# 事件循环
while True:
    event, values = window.read()
    if event == sg.WIN_CLOSED or event == "退出":
        break
window.close()

这个简单的程序展示了PySimpleGUI的基本结构:

  1. 导入PySimpleGUI库
  2. 定义窗口的布局(包括组件和它们的排列方式)
  3. 创建窗口对象
  4. 进入事件循环,处理用户交互
  5. 根据事件(如按钮点击或窗口关闭)决定程序流程

PySimpleGUI的基本组件

PySimpleGUI提供了多种组件,用于构建各种功能的GUI界面。以下是一些常用组件:

  1. 文本组件:用于显示文本信息
    sg.Text("欢迎来到AI聊天世界!")
    
  2. 按钮组件:用于执行操作
    sg.Button("发送")
    
  3. 输入组件:用于接收用户输入
    sg.InputText()
    
  4. 多行文本组件:用于显示和编辑多行文本
    sg.Multiline(size=(50, 10))
    
  5. 窗口组件:用于组织其他组件
    sg.Window("AI聊天机器人")
    

练习:创建一个基本聊天界面

让我们创建一个包含文本显示区域、输入框和发送按钮的基本聊天界面。

import PySimpleGUI as sg
# 定义窗口布局
layout = [
    [sg.Text("AI聊天机器人", size=(40, 1), justification='center', font=('Arial', 14))],
    [sg.Multiline(size=(50, 10), key='-CHAT-HISTORY-', disabled=True)],
    [sg.InputText(size=(40, 1), key='-USER-INPUT-')],
    [sg.Button("发送", size=(10, 1))]
]
# 创建窗口对象
window = sg.Window("AI聊天机器人", layout)
# 事件循环
while True:
    event, values = window.read()
    if event == sg.WIN_CLOSED:
        break
    if event == "发送":
        # 获取用户输入
        user_input = values['-USER-INPUT-']
        # 将用户输入添加到聊天历史中
        chat_history = values['-CHAT-HISTORY-'] + "你: " + user_input + "\n"
        window['-CHAT-HISTORY-'].update(chat_history)
        # 清空输入框
        window['-USER-INPUT-'].update("")
window.close()

这个练习帮助孩子们理解如何使用PySimpleGUI创建一个基本的聊天界面,并如何处理用户输入和更新界面显示。

第二部分:智谱AI API入门

什么是智谱AI?

智谱AI是一个国产自主的大模型开放平台,提供了多种大模型服务,包括GLM-4-Flash,这是智谱AI第一个免费的大模型API,具有速度快、功能强大等特点[1]。

注册智谱AI账号

要使用智谱AI的API,首先需要在智谱AI开放平台注册账号。以下是注册步骤:

  1. 访问智谱AI开放平台官网:https://bigmodel.cn/
  2. 点击右上角的"注册/登录"按钮
  3. 填写注册信息,完成账号注册
  4. 完成实名认证[49]

获取API Key

注册并登录智谱AI账号后,我们需要获取API Key来调用他们的API服务:

  1. 登录智谱AI开放平台
  2. 导航到API Keys页面
  3. 创建一个新的API Key[50]
    获取的API Key需要妥善保存,以便后续使用。

安装智谱AI Python SDK

智谱AI提供了Python SDK,方便开发者调用他们的API服务。安装方法如下:

pip install --upgrade zhipuai

调用智谱AI API的基本方法

调用智谱AI的GLM-4-Flash模型需要遵循以下步骤:

  1. 导入智谱AI的Python SDK
  2. 初始化客户端,传入API Key
  3. 构建请求参数
  4. 发起API调用
  5. 处理返回结果
    以下是一个基本的API调用示例:
from zhipuai import Client
# 初始化客户端,传入API Key
client = Client('your_api_key_here')
# 构建对话消息列表
messages = [
    {"role": "user", "content": "你好,AI助手!"},
    {"role": "assistant", "content": "你好!有什么可以帮助你的吗?"}
]
# 调用API
response = client.chat.completions.create(
    model="glm-4-flash",
    messages=messages
)
# 处理返回结果
print(response['choices'][0]['message']['content'])

这个示例展示了如何使用智谱AI的Python SDK调用GLM-4-Flash模型进行对话。孩子们需要理解对话消息列表的概念,这是与大模型交互的核心机制。

练习:创建一个简单的API调用程序

让我们创建一个简单的Python程序,用于调用智谱AI的API并获取响应。

from zhipuai import Client
# 从环境变量或配置文件获取API Key
import os
API_KEY = os.environ.get('ZhipuAI-APIKey')
# 初始化客户端
client = Client(API_KEY)
# 用户输入
user_input = input("请输入你的问题:")
# 构建对话消息列表
messages = [
    {"role": "user", "content": user_input}
]
# 调用API
response = client.chat.completions.create(
    model="glm-4-flash",
    messages=messages
)
# 显示AI助手的回复
print("AI助手:", response['choices'][0]['message']['content'])

这个练习帮助孩子们理解如何将用户输入传递给AI模型,并获取和显示模型的响应。

第三部分:整合PySimpleGUI和智谱AI API

创建完整的AI聊天机器人

现在,我们将前面学习的PySimpleGUI和智谱AI API知识结合起来,创建一个完整的AI聊天机器人应用。

import PySimpleGUI as sg
from zhipuai import Client
import os
# 从环境变量获取API Key
API_KEY = os.environ.get('ZhipuAI-APIKey')
client = Client(API_KEY)
# 定义窗口布局
layout = [
    [sg.Text("AI聊天机器人", size=(40, 1), justification='center', font=('Arial', 14))],
    [sg.Multiline(size=(50, 10), key='-CHAT-HISTORY-', disabled=True)],
    [sg.InputText(size=(40, 1), key='-USER-INPUT-')],
    [sg.Button("发送", size=(10, 1))]
]
# 创建窗口对象
window = sg.Window("AI聊天机器人", layout)
# 初始化聊天历史
chat_history = "欢迎使用AI聊天机器人!\n"
# 更新聊天历史显示
window['-CHAT-HISTORY-'].update(chat_history)
# 事件循环
while True:
    event, values = window.read()
    if event == sg.WIN_CLOSED:
        break
    if event == "发送":
        # 获取用户输入
        user_input = values['-USER-INPUT-']
        
        # 将用户输入添加到聊天历史中
        chat_history += "你: " + user_input + "\n"
        window['-CHAT-HISTORY-'].update(chat_history)
        
        # 清空输入框
        window['-USER-INPUT-'].update("")
        
        # 构建对话消息列表
        messages = [
            {"role": "user", "content": user_input}
        ]
        
        # 调用API获取AI回复
        try:
            response = client.chat.completions.create(
                model="glm-4-flash",
                messages=messages
            )
            ai_response = response['choices'][0]['message']['content']
            
            # 将AI回复添加到聊天历史中
            chat_history += "AI助手: " + ai_response + "\n"
            window['-CHAT-HISTORY-'].update(chat_history)
        except Exception as e:
            # 显示错误信息
            chat_history += "错误: " + str(e) + "\n"
            window['-CHAT-HISTORY-'].update(chat_history)
            
window.close()

这个完整的AI聊天机器人应用展示了如何将PySimpleGUI和智谱AI API结合起来,创建一个可以与用户交互并调用大模型获取回复的应用程序。

功能扩展

为了进一步提高这个AI聊天机器人的功能和用户体验,我们可以考虑以下扩展:

  1. 保存和加载聊天历史:允许用户保存聊天记录并在以后加载
    # 保存聊天历史
    with open("chat_history.txt", "w") as f:
        f.write(chat_history)
    
    # 加载聊天历史
    with open("chat_history.txt", "r") as f:
        chat_history = f.read()
    
  2. 添加语音功能:通过文本转语音技术,让AI助手可以"说话"
    import pyttsx3
    
    # 初始化文本转语音引擎
    engine = pyttsx3.init()
    
    # 朗读AI回复
    engine.say(ai_response)
    engine.runAndWait()
    
  3. 多语言支持:支持用户使用不同的语言与AI助手交流
    from googletrans import Translator
    
    # 翻译用户输入
    translator = Translator()
    translated = translator.translate(user_input, dest='en')
    user_input_translated = translated.text
    
    # 构建对话消息列表
    messages = [
        {"role": "user", "content": user_input_translated}
    ]
    
  4. 添加表情和格式:使聊天界面更加生动和有趣
    # 在聊天历史中添加表情
    chat_history += "😊 AI助手: " + ai_response + "\n"
    

练习:创建一个带有语音功能的AI聊天机器人

让我们创建一个带有语音功能的AI聊天机器人,使AI助手能够"说话"。

import PySimpleGUI as sg
from zhipuai import Client
import os
import pyttsx3
# 从环境变量获取API Key
API_KEY = os.environ.get('ZhipuAI-APIKey')
client = Client(API_KEY)
# 初始化文本转语音引擎
engine = pyttsx3.init()
# 定义窗口布局
layout = [
    [sg.Text("AI聊天机器人", size=(40, 1), justification='center', font=('Arial', 14))],
    [sg.Multiline(size=(50, 10), key='-CHAT-HISTORY-', disabled=True)],
    [sg.InputText(size=(40, 1), key='-USER-INPUT-')],
    [sg.Button("发送", size=(10, 1))]
]
# 创建窗口对象
window = sg.Window("AI聊天机器人", layout)
# 初始化聊天历史
chat_history = "欢迎使用AI聊天机器人!\n"
# 更新聊天历史显示
window['-CHAT-HISTORY-'].update(chat_history)
# 事件循环
while True:
    event, values = window.read()
    if event == sg.WIN_CLOSED:
        break
    if event == "发送":
        # 获取用户输入
        user_input = values['-USER-INPUT-']
        
        # 将用户输入添加到聊天历史中
        chat_history += "你: " + user_input + "\n"
        window['-CHAT-HISTORY-'].update(chat_history)
        
        # 清空输入框
        window['-USER-INPUT-'].update("")
        
        # 构建对话消息列表
        messages = [
            {"role": "user", "content": user_input}
        ]
        
        # 调用API获取AI回复
        try:
            response = client.chat.completions.create(
                model="glm-4-flash",
                messages=messages
            )
            ai_response = response['choices'][0]['message']['content']
            
            # 将AI回复添加到聊天历史中
            chat_history += "AI助手: " + ai_response + "\n"
            window['-CHAT-HISTORY-'].update(chat_history)
            
            # 朗读AI回复
            engine.say(ai_response)
            engine.runAndWait()
        except Exception as e:
            # 显示错误信息
            chat_history += "错误: " + str(e) + "\n"
            window['-CHAT-HISTORY-'].update(chat_history)
            
window.close()

这个练习帮助孩子们理解如何将语音功能集成到AI聊天机器人中,使应用更加生动和有趣。

第四部分:项目实践与优化

项目部署

为了让AI聊天机器人更加实用,我们需要考虑如何部署它,使其能够在不同的设备和环境下运行。

  1. Python解释器:确保目标设备上安装了Python
  2. 依赖库:确保所有必要的依赖库都已安装
    pip install pysimplegui zhipuai pyttsx3
    
  3. API Key配置:确保API Key已正确配置

应用优化

为了提高AI聊天机器人的性能和用户体验,我们可以进行以下优化:

  1. 错误处理:添加更完善的错误处理机制
    try:
        # API调用代码
    except Exception as e:
        # 显示友好的错误信息
        chat_history += "发生错误: " + str(e) + "\n"
        window['-CHAT-HISTORY-'].update(chat_history)
    
  2. 性能优化:优化API调用的性能
    # 设置API调用的超时时间
    response = client.chat.completions.create(
        model="glm-4-flash",
        messages=messages,
        timeout=10  # 10秒超时
    )
    
  3. 用户体验:改善用户的使用体验
    # 添加发送按钮的禁用功能,防止重复提交
    window['发送'].disable()
    try:
        # API调用代码
    finally:
        window['发送'].enable()
    

练习:创建一个优化版的AI聊天机器人

让我们创建一个优化版的AI聊天机器人,包含错误处理、性能优化和用户体验改进。

import PySimpleGUI as sg
from zhipuai import Client
import os
import pyttsx3
import time
# 从环境变量获取API Key
API_KEY = os.environ.get('ZhipuAI-APIKey')
client = Client(API_KEY)
# 初始化文本转语音引擎
engine = pyttsx3.init()
# 定义窗口布局
layout = [
    [sg.Text("AI聊天机器人", size=(40, 1), justification='center', font=('Arial', 14))],
    [sg.Multiline(size=(50, 10), key='-CHAT-HISTORY-', disabled=True)],
    [sg.InputText(size=(40, 1), key='-USER-INPUT-')],
    [sg.Button("发送", size=(10, 1), key='-SEND-BUTTON-')]
]
# 创建窗口对象
window = sg.Window("AI聊天机器人", layout)
# 初始化聊天历史
chat_history = "欢迎使用AI聊天机器人!\n"
# 更新聊天历史显示
window['-CHAT-HISTORY-'].update(chat_history)
# 事件循环
while True:
    event, values = window.read()
    if event == sg.WIN_CLOSED:
        break
    if event == "-SEND-BUTTON-":
        # 禁用发送按钮,防止重复提交
        window['-SEND-BUTTON-'].disable()
        
        # 获取用户输入
        user_input = values['-USER-INPUT-']
        
        # 将用户输入添加到聊天历史中
        chat_history += "你: " + user_input + "\n"
        window['-CHAT-HISTORY-'].update(chat_history)
        
        # 清空输入框
        window['-USER-INPUT-'].update("")
        
        # 构建对话消息列表
        messages = [
            {"role": "user", "content": user_input}
        ]
        
        try:
            # 调用API获取AI回复
            response = client.chat.completions.create(
                model="glm-4-flash",
                messages=messages,
                timeout=10  # 设置10秒超时
            )
            ai_response = response['choices'][0]['message']['content']
            
            # 将AI回复添加到聊天历史中
            chat_history += "AI助手: " + ai_response + "\n"
            window['-CHAT-HISTORY-'].update(chat_history)
            
            # 朗读AI回复
            engine.say(ai_response)
            engine.runAndWait()
        except Exception as e:
            # 显示友好的错误信息
            chat_history += "发生错误: " + str(e) + "\n"
            window['-CHAT-HISTORY-'].update(chat_history)
        finally:
            # 重新启用发送按钮
            window['-SEND-BUTTON-'].enable()
            
window.close()

这个优化版的AI聊天机器人包含了错误处理、性能优化和用户体验改进,使应用更加稳定和易用。

第五部分:项目展示与分享

项目展示

完成AI聊天机器人的开发后,孩子们可以进行项目展示,向家人、朋友或同学展示他们创建的AI聊天机器人。
展示内容可以包括:

  1. AI聊天机器人的功能介绍
  2. 开发过程中的挑战和解决方法
  3. 未来的改进计划

项目分享

鼓励孩子们将他们的项目分享到社交媒体或技术社区,获取更多的反馈和建议。
分享内容可以包括:

  1. 项目源代码
  2. 项目文档
  3. 功能演示视频

练习:创建项目展示PPT

让我们创建一个简单的项目展示PPT,帮助孩子们准备他们的项目展示。

# AI聊天机器人项目展示
## 项目概述
- 项目名称:AI聊天机器人
- 项目目标:创建一个可以与用户进行智能对话的图形化AI聊天机器人
- 使用技术:Python、PySimpleGUI、智谱AI API
## 功能介绍
1. 用户可以通过图形界面与AI助手进行对话
2. AI助手能够理解并回应用户的问题
3. 聊天历史会保存在界面上,方便用户回顾
4. AI助手可以"说话",提供语音反馈
## 开发过程
1. 学习PySimpleGUI,创建图形用户界面
2. 注册智谱AI账号,获取API Key
3. 学习调用智谱AI的GLM-4-Flash模型
4. 将图形界面与AI API集成
5. 添加语音功能,使AI助手能够"说话"
6. 进行错误处理和性能优化
## 挑战与解决
1. **API调用超时问题**:通过设置超时时间和添加加载指示,改善用户体验
2. **语音合成延迟**:优化语音合成过程,减少等待时间
3. **错误处理**:添加完善的错误处理机制,提高应用稳定性
## 未来计划
1. 添加多语言支持,使AI助手能够理解多种语言
2. 增强聊天历史管理功能,允许用户保存和加载聊天记录
3. 添加更多互动元素,如表情和动画
4. 研究更先进的AI模型,提升对话质量
## 感谢
- 智谱AI提供免费的大模型API
- PySimpleGUI简化了GUI开发过程
- 家人和朋友的支持与鼓励

这个项目展示PPT帮助孩子们总结他们的学习成果,并准备向他人展示他们的项目。

总结

通过这个教程,孩子们学习了如何使用Python调用智谱AI的免费大模型GLM-4-Flash,并创建了一个图形化界面的AI聊天机器人。他们不仅掌握了Python GUI编程和API调用的基本知识,还培养了解决问题的能力和创新思维。
这个项目只是一个起点,鼓励孩子们继续探索AI的无限可能,不断学习和创新,将来为AI技术的发展做出自己的贡献。

参考资料

[1] 真香!智谱大模型,有了首个免费的API. https://finance.sina.com.cn/tech/roll/2024-08-27/doc-incmapwn4316671.shtml.
[11] 十分钟写一个python软件,Python最好学习的gui库-pysimplegui. https://zhuanlan.zhihu.com/p/358423020.
[12] 一个非常简单好用的Python图形界面库(PysimpleGUI). https://blog.csdn.net/weixin_42635064/article/details/112923834.
[49] 大模型的训练与应用| 十八、智谱GLM API申请与使用指南. https://blog.csdn.net/weixin_40893489/article/details/141178783.
[50] 获取智谱AI API Key的详细步骤. https://docs.feishu.cn/v/wiki/MkhywRmbjiQgNMkPReec1lEEn6e/a4.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带娃的IT创业者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值