nlgn求最长不下降子列

  假设数字序列为a[N](也可不用保存,一边读入一边处理),先介绍如何求以第一个元素开头的最长不下降子序列,我们会用到一个数组d[N],d[k]保存的是数组a中以第一个元素开头的所有长为k的不下降子序列最后一个元素的最小值(下面将简称为最小最后元素),显然d的长度len即为所求。而且容易用反证法证明这个数组是递增的,若存在i<j,且d[i]>d[j],可以这样想,既然存在一个长为j的且最后一个元素为d[j]的不下降子串,则必然存在一个长为i(i<j)且最后一个元素为d[j]的不下降子串,所以d[i]<=d[j],与假设矛盾。初始化的时候,d中只有一个元素,即数字序列的第一个元素,显然以第一个元素开头且长为1的子串只有一个,所以d[1]=a[1],初始化过后,d数组满足定义(d[k]保存以第一个数字开头的长为k的最小最后元素),接着,每次读入一个数字时,相当数组a新增一个元素,我们设为tmp,我们的任务就是维持d数组的定义,具体操作如下:若tmp>=d[len],则可以直接加入到数组d中,这个容易理解,若tmp<=d[1],则直接抛弃,这两种情况都容易理解,关键在于tmp>d[1]&&tmp<d[len],这时需将d数组中第一个(从1到len)大于tmp的数字更新为tmp,因为d是有序的,所以可以使用二分查找,然后更新。当a数组确定后(数据读入完成),数组d也就确定了,此时数组d的长度就是数组a中以第一个数开头的最长不下降子序列的长度。读入数据使用一层循环,查找更新需一层循环,由于查找时用了二分,所以总的时间复杂度为O(nlogn)。到此为止,我们已经完成了一大半工作,只需一个很少的变动,即可用上面的算法来求数组a的最长不下降子序列的长度,且时间复杂度仍为O(nlogn),这是一个很有创造性的改进,我们只需给在数组a前面新增一个数字-INF(负无穷大),此时a数组第一个数是-INF,第二个数是原来的第一个数,一次类推,第n+1个数为原数组a的第n个数,使用上面的算法求以第一个数开头的最长不下降子序列,即以-INF开头的最长不下降子序列,看出名堂来了吗?以-INF开头的最长不下降子序列长度=原数组a最长不下降子序列长度+1。需说明的是,实际处理时,只需将数组d第一个数初始化为-INF即可。到此为止,大功告成。

附上poj1631代码:

#include <iostream>

using namespace std;
#define MAXN 40002
int d[MAXN];
int len;
int Find(int x);
int main()
{
    int Case,i,j,p,tmp;
    cin>>Case;
    while (Case--)
    {
        len=1;
        d[len]=-1;
        cin>>p;
        for (i=1;i<=p;i++)
        {
            cin>>tmp;
            if(tmp>=d[len]) d[++len]=tmp;
            else
            {
                  d[Find(tmp)]=tmp;
            }
        }
        cout<<len-1<<endl;
    }
    return 0;
}
int Find(int x)
{
    int up=len,down=1,mid;
    while (up-down>1)
    {
        mid=(up+down)/2;
        if(d[mid]>x) up=mid;
        else down=mid;
    }
    return up;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值