数据结构之树概述

非线性结构:

树的定义:树(Tree)是n(n>=0)个节点的有限集T。它或是空集(空树即n=0),或者是非空集。

对于任意一颗非空树:

(1)有且仅有一个特定的称为根的节点。

(2)当n>1时,其余节点可分为m(m>0)个互不相交的有限集合T1,T2,T3,......................,Tm  其中每个集合本身又是一棵树,并称为根的子树。

树定义

专业定义:
1. 有且只有一个称为根的节点
2.有若干个互不相交的子树,这些子树本身也是一棵树
通俗的定义:
1.树是由节点和边组成
2.每个节点只有一个父节点但可以有多个子节点
3.但有一个节点例外,该节点没有父节点,此节点称为根节点

专业术语
节点           父节点            子节点
子孙           堂兄弟
深度 : 从根节点到最底层节点的层数称之为深度 ,  根节点是第一层1
叶子节点:  没有子节点的节点
非终端节点:实际就是非叶子节点

度:子节点的个数(最大的子节点) 

节点的度和树的度:树的节点包含一个数据元素及若干个指向其子树的分支,一个节点拥有的子树数称为该节点的度。一个树中节点最大的度数称为该树的度

叶子节点、分支节点和根节点:度数为0的节点称为叶子节点或终端节点。度数不为0的节点称为非终端节点或分支节点。除根节点外,分支节点也称为内部节点,而根节点又称为开始节点

孩子节点和双亲节点:树中某个节点子树的根称为该节点的孩子,响应地,该节点称为孩子节点的双亲或父节点。

子孙节点和祖先节点:若在一棵树中存在着一个节点序列k1,k2,......kj   使得ki是ki+1的父节点(1=<i<=j),则称为该节点序列是从k1到kj的一条路径。若树中的节点ki到kj存在一条路径则称节点ki是kj的祖先,节点kj是ki的子孙

节点的层次和树的高度:树中节点的层次是从根开始算起,根为第一层,其余节点的层次等于双亲节点的层数加1.树中节点最大的层次称为树的深度或者高度

有序树和无序树:如果将树中节点的各个子树看成是从左到右依次有序且不能交换,则称该树为有序树,否则称为无序树

森林:森林是m(m>=0)棵互不相交的树的集合。若将一棵树的根节点删除,就的得到该树的子树所构成的森林;如果将森林中所有树作为子树,用一个根节点把子树都连起来,森林就变成了一棵树。

树分类

一般树:任意一个节点的子节点的个数都不受限制
二叉树:任意一个节点的子节点个数最多两个,且子节点的位置不可更
森林:n个互不相交的树的集合

 

一般树:任意一个节点的子节点的个数都不受限制
二叉树:任意一个节点的子节点个数最多两个,且子节点的位置不可更改

   分类:
       一般二叉树
       满二叉树:在不增加树的层数的前提下,无法再多添加一个节点的二叉树就是满二叉树
       完全二叉树:如果只是删除了满二叉树最底层最右边的连续若干个节点,这样形成的二叉树就是完全二叉树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值