非线性结构:
树的定义:树(Tree)是n(n>=0)个节点的有限集T。它或是空集(空树即n=0),或者是非空集。
对于任意一颗非空树:
(1)有且仅有一个特定的称为根的节点。
(2)当n>1时,其余节点可分为m(m>0)个互不相交的有限集合T1,T2,T3,......................,Tm 其中每个集合本身又是一棵树,并称为根的子树。
树定义
专业定义:
1. 有且只有一个称为根的节点
2.有若干个互不相交的子树,这些子树本身也是一棵树
通俗的定义:
1.树是由节点和边组成
2.每个节点只有一个父节点但可以有多个子节点
3.但有一个节点例外,该节点没有父节点,此节点称为根节点
专业术语
节点 父节点 子节点
子孙 堂兄弟
深度 : 从根节点到最底层节点的层数称之为深度 , 根节点是第一层1
叶子节点: 没有子节点的节点
非终端节点:实际就是非叶子节点
度:子节点的个数(最大的子节点)
节点的度和树的度:树的节点包含一个数据元素及若干个指向其子树的分支,一个节点拥有的子树数称为该节点的度。一个树中节点最大的度数称为该树的度
叶子节点、分支节点和根节点:度数为0的节点称为叶子节点或终端节点。度数不为0的节点称为非终端节点或分支节点。除根节点外,分支节点也称为内部节点,而根节点又称为开始节点
孩子节点和双亲节点:树中某个节点子树的根称为该节点的孩子,响应地,该节点称为孩子节点的双亲或父节点。
子孙节点和祖先节点:若在一棵树中存在着一个节点序列k1,k2,......kj 使得ki是ki+1的父节点(1=<i<=j),则称为该节点序列是从k1到kj的一条路径。若树中的节点ki到kj存在一条路径则称节点ki是kj的祖先,节点kj是ki的子孙
节点的层次和树的高度:树中节点的层次是从根开始算起,根为第一层,其余节点的层次等于双亲节点的层数加1.树中节点最大的层次称为树的深度或者高度
有序树和无序树:如果将树中节点的各个子树看成是从左到右依次有序且不能交换,则称该树为有序树,否则称为无序树
森林:森林是m(m>=0)棵互不相交的树的集合。若将一棵树的根节点删除,就的得到该树的子树所构成的森林;如果将森林中所有树作为子树,用一个根节点把子树都连起来,森林就变成了一棵树。
树分类
一般树:任意一个节点的子节点的个数都不受限制
二叉树:任意一个节点的子节点个数最多两个,且子节点的位置不可更
森林:n个互不相交的树的集合
一般树:任意一个节点的子节点的个数都不受限制
二叉树:任意一个节点的子节点个数最多两个,且子节点的位置不可更改
分类:
一般二叉树
满二叉树:在不增加树的层数的前提下,无法再多添加一个节点的二叉树就是满二叉树
完全二叉树:如果只是删除了满二叉树最底层最右边的连续若干个节点,这样形成的二叉树就是完全二叉树