Description
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
Input
第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
Output
最小平均等待时间,答案精确到小数点后2位。
Sample Input
2 2
3 2
1 4
Sample Output
1.50
HINT
数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)
分析:
一道费用流问题
把每个工作人员拆成m个点(我的n和m好像和题中是反的233333)
第d个点代表这个人修的车中倒数第d辆
然后将每辆车向这些点连边,流量为1 费用为f[j][i]*d
(f[j][i]表示这个人修这辆车所需的花费)
这个人修这辆车需要花费f[i][j]的费用 而与此同时后面还有d-1辆车,它们都需要花费这么多的等待时间,所以总的花费为f[j][i]*d
因为各种限制 所以流量只是1
之前把n和m搞反了wa了好几遍TAT
多半是废了
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ms(x,y) memset(x,y,sizeof(x))
using namespace std;
const int N = 15;
const int M = 65;
const int NN = 100010;
const int INF = 0x73f3f3f;
int n,m;
int f[M][N];
struct node{
int pre,flow,v,cost;
}edge[NN];
int s,t;
int num=1;
int head[NN];
void addedge(int from,int to,int f,int w){
num++;
edge[num].pre=head[from];
edge[num].v=to;
edge[num].flow=f;
edge[num].cost=w;
head[from]=num;
num++;
edge[num].pre=head[to];
edge[num].v=from;
edge[num].flow=0;
edge[num].cost=-w;
head[to]=num;
}
int dis[NN],state[NN*10],Pre[NN];
bool exist[NN];
bool spfa(){
int h=0,tail=1;
dis[s]=0;state[1]=s;exist[s]=true;
do{
h++;
int u=state[h];exist[u]=false;
for(int i=head[u];i;i=edge[i].pre){
int v=edge[i].v;
if(dis[v]>dis[u]+edge[i].cost&&edge[i].flow){
dis[v]=edge[i].cost+dis[u];
Pre[v]=i;
if(!exist[v]){
tail++;
state[tail]=v;
exist[v]=true;
}
}
}
}
while(h<tail);
if(Pre[t]) return true;
return false;
}
void zero(){
ms(state,0);ms(exist,0);ms(dis,INF);ms(Pre,0);
}
inline int Min(int a,int b){
return a<b?a:b;
}
void MCMF(int &cost){
cost=0;
while(1){
zero();
if(!spfa()) break;
int dd=INF;
for(int i=Pre[t];i;i=Pre[edge[i^1].v])
dd=Min(dd,edge[i].flow);
for(int i=Pre[t];i;i=Pre[edge[i^1].v]){
edge[i].flow-=dd;
edge[i^1].flow+=dd;
cost+=dd*edge[i].cost;
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
scanf("%d",&f[i][j]);
s=0,t=(n+1)*m+1;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int u=i*m+j;
addedge(s,u,1,0);
for(int d=1;d<=m;d++){
int v=d;
addedge(u,v,1,f[d][i]*j);
}
}
}
for(int i=1;i<=m;i++) addedge(i,t,1,0);
/*for(int i=head[0];i;i=edge[i].pre){
printf("%d ",edge[i].v);
}//日常确认连边没问题 */
int cost,flow;
MCMF(cost);
double x=(double)cost/m;
printf("%0.2lf",x);
return 0;
}

718

被折叠的 条评论
为什么被折叠?



