1614: [Usaco2007 Jan]Telephone Lines架设电话线
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 1776 Solved: 763
[Submit][Status][Discuss]
Description
Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务。于是,FJ必须为此向电信公司支付一定的费用。 FJ的农场周围分布着N(1 <= N <= 1,000)根按1..N顺次编号的废弃的电话线杆,任意两根电话线杆间都没有电话线相连。一共P(1 <= P <= 10,000)对电话线杆间可以拉电话线,其余的那些由于隔得太远而无法被连接。 第i对电话线杆的两个端点分别为A_i、B_i,它们间的距离为 L_i (1 <= L_i <= 1,000,000)。数据中保证每对{A_i,B_i}最多只出现1次。编号为1的电话线杆已经接入了全国的电话网络,整个农场的电话线全都连到了编号为N的电话线杆上。也就是说,FJ的任务仅仅是找一条将1号和N号电话线杆连起来的路径,其余的电话线杆并不一定要连入电话网络。 经过谈判,电信公司最终同意免费为FJ连结K(0 <= K < N)对由FJ指定的电话线杆。对于此外的那些电话线,FJ需要为它们付的费用,等于其中最长的电话线的长度(每根电话线仅连结一对电话线杆)。如果需要连结的电话线杆不超过 K对,那么FJ的总支出为0。 请你计算一下,FJ最少需要在电话线上花多少钱。
Input
第1行: 3个用空格隔开的整数:N,P,以及K
- 第2..P+1行: 第i+1行为3个用空格隔开的整数:A_i,B_i,L_i
Output
- 第1行: 输出1个整数,为FJ在这项工程上的最小支出。如果任务不可能完成, 输出-1
Sample Input
5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6
输入说明:
一共有5根废弃的电话线杆。电话线杆1不能直接与电话线杆4、5相连。电话
线杆5不能直接与电话线杆1、3相连。其余所有电话线杆间均可拉电话线。电信
公司可以免费为FJ连结一对电话线杆。
Sample Output
4
输出说明:
FJ选择如下的连结方案:1->3;3->2;2->5,这3对电话线杆间需要的
电话线的长度分别为4、3、9。FJ让电信公司提供那条长度为9的电话线,于是,
他所需要购买的电话线的最大长度为4。
HINT
Source
Silver
题解:
一道二分+spfa 今天就一直跟二分磕。
(优化还没有不优化快
二分一个值x,然后视大于x的路为1,否则为0,如果连接的最短路上只有不超过k条路大于x,则x是一个可行解。
/**************************************************************
Problem: 1614
User: LaLaLa112138
Language: C++
Result: Accepted
Time:108 ms
Memory:2904 kb
****************************************************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ms(x,y) memset(x,y,sizeof(x))
using namespace std;
const int N = 100010;
const int INF = 0x73f3f3f;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline int Max(int a,int b){
return a>b?a:b;
}
int n,p,k;
int mmax=-1;
struct node{
int pre,v,w;
}edge[N];
int num=0;
int head[N];
void addedge(int from,int to,int w){
edge[++num].pre=head[from];
edge[num].v=to;
edge[num].w=w;
head[from]=num;
}
deque<int> q;
int dis[N];
bool vis[N];
int spfa(int x){
ms(dis,63),ms(vis,0);
q.push_back(1);dis[1]=0;
int d;
while(!q.empty()){
int u=q.front();q.pop_front();vis[u]=false;
for(int i=head[u];i;i=edge[i].pre){
edge[i].w>x?d=1:d=0;
int v=edge[i].v;
if(dis[v]>dis[u]+d){
dis[v]=dis[u]+d;
if(!vis[v]){
vis[v]=true;
if((!q.empty())&&(dis[v]>dis[q.front()])) q.push_front(v);
else q.push_back(v);
}
}
}
}
return dis[n];
}
bool check(int mid){
int a=spfa(mid);
if(a<=k) return true;
return false;
}
int main(){
n=read(),p=read(),k=read();
for(register int i=1;i<=p;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);addedge(v,u,w);
mmax=Max(mmax,w);
}
int l=0,r=mmax;
int ans=-1;
while(l<=r){
int mid=l+r>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d",ans);
return 0;
}