北大 算法基础-八数码问题 双向广搜

该代码实现了一个用于解决九宫格中数字0移动到指定位置的双向广度优先搜索算法(Bi-directional Breadth First Search, DBFS)。算法首先计算输入排列和目标排列的序号,然后通过移动操作(上移'u',下移'd',右移'r',左移'l')进行搜索,直至找到解决方案。程序检查输入排列的奇偶性,并确保与目标排列一致,以确保问题有解。最后,程序输出移动路径。
摘要由CSDN通过智能技术生成

代码测试通过.

#include<iostream> 
#include<bitset>
using namespace std;

int goalStatus;//目标序号
bitset<362880> Flags;//标记已用序号
bitset<362880>gFlags;
const int MAXS = 370000;
char result[MAXS];//移动的过程
struct Node
{
	int status;//排列序号
	int father;//父序号
	char move;//移动到当前序号的动作
	Node(int s, int f, int m) :status(s), father(f), move(m) {}
	Node() {}
};
Node myQueue[MAXS];//状态队列
Node goalQueue[MAXS];//队列2
int qHead; int qTail;//队头,队尾的'指针'
int gHead; int gTail;//第二组队列的'指针'
int qEnd=0;//记录从哪个队列返回
char sz4Moves[] = "udrl";//四个移动动作
unsigned int factorial[21];//阶乘的值数组
char reslt[MAXS];//暂存移动的状态

unsigned int GetPermutationNumForInt(int* perInt, int len) {
	//从数值排列perInt计算序号
	bool numUsed[21];//数字使用标记
	unsigned int num = 0;
	memset(numUsed, 0, sizeof(numUsed));
	for (int i = 0; i < len; i++)//循环每一位数
	{
		int n = 0;
		numUsed[perInt[i]] = 1;//标记第i位数已使用
		for (int j = 0; j < perInt[i]; j++) {
			if (!numUsed[j])
				++n;
		}
		num += n * factorial[len - 1 - i];
	}
	return num;//从0开始所以不加上它自身的状态
}

template<class T>
unsigned int GetPermutationNum(T s1, T s2, int len) {
	//给定任意排列求序号,s1是第一个排列,s2待求的排列
	int* perInt = new int[len];
	for (int i = 0; i < len; i++)//把任意排列转为数值排列perInt
		for (int j = 0; j < len; j++)
			if (*(s2 + i) == *(s1 + j))
			{
				perInt[i] = j;
				break;
			}
	unsigned int num = GetPermutationNumForInt(perInt, len);
	delete[] perInt;//清空
	return num;//返回序号
}

template<class T>
void GetPermutationByNum(T s1, T s2, int len, unsigned int No) {
	//根据序号求任意排列,s1是第一个排列
	int* perInt = new int[len];//存排列的数值
	bool* numUsed = new bool[len];//已使用标记
	memset(numUsed, 0, sizeof(bool) * len);//numUsed是指针不能放在第三位,注意
	for (int i = 0; i < len; i++) {	//第i位
		int j;
		for (j = 0; j < len; j++) {
			if (!numUsed[j])
			{
				if (factorial[len - 1 - i] >= No + 1)
					break;
				else
					No -= factorial[len - 1 - i];
			}
		}
		perInt[i] = j;//找到的数放入排列
		numUsed[j] = 1;
	}

	for (int i = 0; i < len; i++) {
		*(s2 + i) = *(s1 + perInt[i]);//转换成任意形式的排列s2
	}
	delete[] perInt;
	delete[] numUsed;
}

unsigned int StrStatusToIntStatus(const char* strStatus) {
	//从字串排列求序号
	return GetPermutationNum("012345678", strStatus, 9);

}

void IntStatusToStrStatus(int n, char* strStatus) {
	//从序号求字串排列
	GetPermutationByNum((char*)"012345678", strStatus, 9, n);//为了类型统一,加上(char*)
}

int NewStatus(int nStatus, char cMove) {
	//从序号nStatus,通过cMove移动为新排列序号
	char szTmp[20];//保存序号对应的字串排列
	int nZeroPos;//0的位置
	IntStatusToStrStatus(nStatus, szTmp);//序号求字符排列
	for (int i = 0; i < 9; i++)//找0位
		if (szTmp[i] == '0') {
			nZeroPos = i;
			break;
		}
	switch (cMove) {//移动0的位置
	case'u':if (nZeroPos < 3)return -1;//最上排,不能上移
		   else {
		szTmp[nZeroPos] = szTmp[nZeroPos - 3];
		szTmp[nZeroPos - 3] = '0';
		break;
	}
	case'd':if (nZeroPos > 5)return -1;
		   else {
		szTmp[nZeroPos] = szTmp[nZeroPos + 3];
		szTmp[nZeroPos + 3] = '0';
		break;
	}
	case'r':if (nZeroPos % 3 == 2) return -1;
		   else {
		szTmp[nZeroPos] = szTmp[nZeroPos + 1];
		szTmp[nZeroPos + 1] = '0';
		break;
	}
	case'l':if (nZeroPos % 3 == 0) return -1;
		   else {
		szTmp[nZeroPos] = szTmp[nZeroPos - 1];
		szTmp[nZeroPos - 1] = '0';
	}
	}
	return StrStatusToIntStatus(szTmp);
}

bool Dbfs(int startStatus,int goalStatus) {//双向广搜
	int nNewStatus;
	int Status; int gStatus;
	Flags.reset();
	gFlags.reset();
	qHead = 0;	qTail = 1;
	gHead = 0; gTail = 1;
	myQueue[qHead] = Node(startStatus, -1, 0);
	goalQueue[gHead] = Node(goalStatus,-1,0 );
	Flags.set(startStatus, 1);//被使用
	gFlags.set(goalStatus, 1);
	while (qHead != qTail||gHead!=gTail)
	{
		Status = myQueue[qHead].status;
		gStatus = goalQueue[gHead].status;
		if (qTail <= gTail)//队列短的扩展
		{
			for (int i = 0; i < 4; i++)//四个方向移动
			{
				nNewStatus = NewStatus(Status, sz4Moves[i]);
				if (nNewStatus == -1) continue;//不能移
				if (Flags[nNewStatus]) continue;//状态已存在 
				Flags.set(nNewStatus, 1);				
				myQueue[qTail++] = Node(nNewStatus, qHead, sz4Moves[i]);
				if (gFlags[nNewStatus] == 1) 
					return true;//序号在另一个队列里找到,结束
			}
			qHead++;
		}
		else
		{
			for (int i = 0; i < 4; i++)//四个方向移动
			{
				nNewStatus = NewStatus(gStatus, sz4Moves[i]);
				if (nNewStatus == -1) continue;//不能移
				if (gFlags[nNewStatus]) continue;//状态已存在 
				gFlags.set(nNewStatus, 1);
				goalQueue[gTail++] = Node(nNewStatus, gHead, sz4Moves[i]);
				if (Flags[nNewStatus] == 1) {
					qEnd = 1;//找到的节点在第二队列
					return true; }//序号在另一个队列里找到,结束
			}
			gHead++;
		}
	}
	return false;//没有找到
}

int main() {
	factorial[0] = factorial[1] = 1;
	for (int i = 2; i < 21; i++)
		factorial[i] = i * factorial[i - 1];
	goalStatus = StrStatusToIntStatus("123456780");
	char szLine[50];
	char szLine2[20];
	while (cin.getline(szLine, 48)) {//清洗字符放入szLine2
		int j = 0;
		for (int i = 0; szLine[i]; i++) {
			if (szLine[i] != ' ') {//跳过空字符
				if (szLine[i] == 'x')szLine2[j++] = '0';//替换字符x,
				else szLine2[j++] = szLine[i];
			}
		}
		szLine2[j] = 0;//字符串最后一个字符为0
		int sumGoal = 0;
		for (int i = 0; i < 8; i++)//"123456780"的奇偶性
			sumGoal += i;
		int sumOri = 0;
		for (int i = 0; i < 9; i++)//判断奇偶性
			for (int j = 0; j < i; j++)
				if (szLine2[j] < szLine2[i] && szLine2[i] != '0' && szLine2[j] != '0')//奇偶性必须忽略0
				{
					++sumOri;
					continue;
				}

		if (sumGoal % 2 != sumOri % 2)
		{
			cout << "unsolvable" << endl;
			continue;
		}

		char nMoves = 0;
		int nPos = qTail-1;
		
		
		if (Dbfs(StrStatusToIntStatus(szLine2),goalStatus)) {
			if (qEnd == 0)//标志为0,共有序号在myQueue的末尾
			{
				memset(reslt, 0, sizeof(reslt));
				nPos = qTail - 1;
				do {
					reslt[nMoves++] = myQueue[nPos].move;
					nPos = myQueue[nPos].father;
				} while (nPos);

				for (int i = nMoves - 1; i >= 0; i--)
					cout << reslt[i];//反向输出myQueue中的移动

				for(int i=gTail-1;i>=0;i--)
					if (goalQueue[i].status == myQueue[qTail - 1].status) {
						nPos = i;
						break; }				
				do{
					switch (goalQueue[nPos].move)//反向goalQueue里的移动
					{
					case 'u': {cout << 'd';	break; }
					case 'd': {cout << 'u';	break; }
					case 'l': {cout << 'r'; break; }
					case 'r': {cout << 'l'; break; }
					}
					nPos = goalQueue[nPos].father;
				} while (nPos);
			}
			else
			{				
				memset(reslt, 0, sizeof(reslt));
				for (int i = qTail - 1; i >= 0; i--)//共同序号在goalQueue末尾
					if ( myQueue[i].status==goalQueue[gTail-1].status ) {
						nPos = i;
						break;
					}

				nMoves = 0;
				do {
					reslt[nMoves++]= myQueue[nPos].move;
					nPos = myQueue[nPos].father;
				} while (nPos);

				for (int i = nMoves - 1; i >= 0; i--)
					cout << reslt[i];

				nPos = gTail - 1;
				do {
					switch (goalQueue[nPos].move)//反转goalQueue里的移动方向
					{
					case 'u': {cout << 'd';	break;}
					case 'd': {cout << 'u';	break;}
					case'l': {cout << 'r';break;}
					case'r': {cout << 'l';break;}
					}
					nPos = goalQueue[nPos].father;
				} while (nPos);
			}
		}
		else {
			cout << "unsolvable" << endl;
			continue;
		}
	}

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值