一个有意思的算法,Container With Most Water

题目:

Title:
    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate(i, ai).
    n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0).Find two lines, 
    which together with x-axis forms a container, 
    such that the container contains the most water.

    Note: You may not slant the container.

算法:

class SolutionContainerWithMostWater{
	public static int maxArea(int[] height) {
		// excellent method
		int left = 0, right = height.length - 1;
		int area, maxArea = (right-left)*(Math.min(height[left], height[right]) );
		int left0 = left, right0 = right;
		while(left<right){
			if(height[left]<=height[right]){
				while(height[++left]<=height[left0] && left < right);   
				
                left0 = left;
                area = (right-left)*( Math.min(height[left], height[right]) );
                if(area>maxArea){
                    maxArea = area;
                }
			}else{
				while(height[--right]<=height[right0]); 
				right0 = right;
				area = (right-left)*( Math.min(height[left], height[right]) );
                if(area>maxArea){
                    maxArea = area;
                }
			} // else
		} // while(left<right)
        return maxArea;
    } // int maxArea(int[] height)
}


算法亮点: o(n)复杂度,考虑一遍,求出最大值。最大值,肯定取到最两边,以此,轮流考虑两边最短值得情况下,取得的最大值!


我的算法:

class SolutionContainerWithMostWater{
	public static int maxArea(int[] height) {
		int maxArea = 0; // for return the last maxArea
		int area[] = new int[height.length]; // for note each possibility
		
		// note each possible match
		for(int i = 0; i < area.length; i++){
			a. ///
			for(int j = i+1; j < area.length; j++){
				
				// get shorter height from height[i] and height[j]
				int shortOne = (height[i]>height[j]) ? height[j] : height[i];
				
				// get max area[i]
				area[i] = (area[i] > (shortOne*(j-i) ) ) ? area[i] : (shortOne*(j-i) );
			
			}
			b. /
			for(int j = area.length-1; j > i; j--){
				if(height[i]>height[j]){
					area[i] = (area[i] > (height[j]*(j-i) ) ) ? area[i] : (height[j]*(j-i) );
				}else{
					area[i] = (area[i] > (height[i]*(j-i) ) ) ? area[i] : (height[i]*(j-i) );
					break;
				}
			}
		} // for(i)
		
		// get the max area from area[] and put it in maxArea
		for(int i = 0; i < area.length; i++){
			maxArea = (maxArea > area[i]) ? maxArea : area[i];
		}
		
        return maxArea;
    } // int maxArea(int[] height)
}
我的算法:

a. 一般考虑算法,顺序向后求出每个柱子的最大值,然后扫描一遍可得最大值,O(n*n)复杂度,但是便于理解!

b. 对a算法改进,对于前面的每个柱子,从后面考虑它的最大值,直到找到第一个比它高的柱子则没必要再找,但是对于递减序列,复杂度仍旧很高!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值