场景描述
某互联网大厂正在招聘Java后端开发工程师,面试官是一位严肃的技术专家,而求职者毛毛则是一位稍显“水货”的程序员。面试场景聚焦于本地生活服务的电商平台,强调高并发场景和数据一致性问题。以下是面试过程:
第一轮提问:缓存与高并发问题
面试官:“毛毛,我们的电商平台每日订单量高达百万级,商品库存查询是高频操作,你会如何设计缓存方案来提升查询效率?”
毛毛:“呃,我会用Redis来存储商品库存信息,因为Redis速度快,而且支持高并发……”
面试官:“不错,那你打算如何处理缓存穿透问题呢?”
毛毛:“呃……设置一个默认值?”
面试官:“嗯,可以的,但更好的方案是布隆过滤器,你可以研究下。”
面试官继续问:“缓存和数据库中的数据一致性应该如何保证?”
毛毛:“呃,清空缓存然后更新数据库?”
面试官:“这个方案勉强可以,但会有并发问题。更推荐先更新数据库,再通过消息队列异步清理缓存。”
第二轮提问:微服务与事务问题
面试官:“毛毛,我们的电商平台采用了Spring Cloud微服务架构。在处理用户下单事务时,如何保证跨服务的事务一致性?”
毛毛:“呃,是不是用分布式事务?”
面试官:“可以具体说一下实现方式吗?”
毛毛:“呃……用Seata?”
面试官:“Seata确实是一个选择。另外,也可以考虑TCC(Try-Confirm-Cancel)模式,适合高性能场景。”
面试官继续问:“在微服务中,如何进行服务间的调用和负载均衡?”
毛毛:“呃,用OpenFeign和Ribbon?”
面试官:“OpenFeign是对的,但Ribbon已经逐渐被淘汰,推荐使用Spring Cloud LoadBalancer。”
第三轮提问:监控与日志问题
面试官:“毛毛,电商平台的微服务部署在Kubernetes上,我们如何监控各个服务的健康状况?”
毛毛:“呃,用Prometheus采集数据?”
面试官:“没错,还有Grafana可以用来展示数据。那如何追踪分布式服务间的调用链路?”
毛毛:“呃……用Zipkin?”
面试官:“很好,Jaeger也是一个选择。那日志呢,如何统一收集和分析?”
毛毛:“呃……用ELK?”
面试官:“对的,ELK Stack是常用方案。”
面试总结
面试官:“毛毛,感谢你的回答,虽然有些地方还需深入学习,但总体表现还算可以。回去等通知吧!”
毛毛:满脸笑容地离开了面试房间。
技术点总结
1. Redis缓存设计
- 使用Redis存储高频查询数据如商品库存,提升查询效率。
- 通过布隆过滤器解决缓存穿透问题。
- 使用消息队列异步清理缓存以保证数据一致性。
2. 微服务架构与事务处理
- 分布式事务可以采用Seata或TCC模式,适用于不同场景。
- 服务间调用推荐使用OpenFeign,负载均衡建议使用Spring Cloud LoadBalancer。
3. 监控与日志
- 使用Prometheus采集服务健康状况,并通过Grafana可视化。
- 使用Zipkin或Jaeger追踪分布式调用链路。
- 采用ELK Stack统一收集日志并分析。
通过这次面试场景,相信大家对Redis缓存、Spring微服务以及日志监控的技术应用有了更深入的了解。希望本文能帮助到更多求职者!