拓展欧几里得

训练的时候做了一道题  poj1061 虽然有想到是拓展欧几里得但是还是写不出。。。所以有必要记录一下


板子很简单:

	int x,y;
	int extendgcd(int a,int b){
		if(b==0){
			x=1;
			y=0;
			return a;
		}
		int d=extendgcd(b,a%b);
		int temp=x;
		x=y;
		y=temp-a/b*x;
		return d;
	}

关于拓展欧几里得的原理是这样的(抄来的)

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

证明:设 a>b。

  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2,ab!=0 时

  设 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

     这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

既然是拓展 那肯定还有欧几里德算法。

欧几里德的一个应用就是辗转相除法(可以这么理解吗)


int gcd(int a,int b)
{
    if(b==0)
        return a;
    return 
        gcd(b,a%b);
}



这一部分是重中之重:

关于ax+by=c的通解

d = gcd(a,b)

他的一个特解是x = x0*c/d

证明:

ax+by=c ①

ax0+by0=d ②

②式两边同乘c/d得 ax0*c/d +by0*c/d  = c ③

①③对比一下得特解x = x0*c/d

所以所有d个解是 x =( x0 + i*b/d)mod b ,i 为0  →  d-1 的整数,根据推导可以得出两个解之间的差正好为b/d(百度吧我不会证= =)

线性同余方程ax≡c (mod b)的最小整数解 也就是ax+by=c

d = gcd(a,b)

ans = x*c/d , s = b/d

最小整数解是 (ans%s+s)%s


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值