状态压缩dp学习 + poj3254(最简单的状态压缩dp)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yxm980918/article/details/73849399

初学状压就找个比较简单的dp,应该是最好想的状态压缩了。

状态压缩dp也就是如果正常开数组,必然会导致内存过大,所有需要另外找一种办法来代替这个问题,那么就用二进制来替代,这应该就是对于状态压缩最通俗的解释了。关于一些二进制的操作比如

1 如何判断数字x第i位是否为1    1<<(i-1) & x

2 将一个数字x二进制下第i位更改成1  x= x|(1<<(i-1))

3 把一个数字二进制下最靠右的第一个1去掉  x=x&(x-1)  (BIT里面我记得用到的就是这个)

总之,二进制真的是一个十分巧妙的东西,也是一个非常好用的东西

然后是经典的TSP(旅行商问题)

代码什么的白书上都有,然后白书上一些对于位运算的操作

http://blog.csdn.net/qq_32400847/article/details/51814131这篇文章都有很详细的解释就不写了。





poj3254

题目大意是:给一个n*m的矩阵,上面1表示肥沃的土地,0表示贫瘠的土地,然后要让牛必须站在肥沃的土地上,又不能相邻(可以整个都不站牛)

题解:那就用二进制来表示整个土地的样子,状态转移是dp[i][j] = sum(dp[i-1][0-cnt]) 表示第i行的站法是由i-1行所有可能的站法并且两行不能冲突的和

有一个技巧就是如果判断一个数字是否有相邻的两个1  x&(x<<1) 如果是0则表示没有1则表示有。

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
#include <stack>
#include <cmath>
#define fuck() (cout << "--------------------------------" << endl)
#define mod 100000000
using namespace std;
const int maxn = 100000 + 5;
const int inf = 0x3f3f3f3f;
int ok[maxn];
int maps[maxn];
int dp[13][maxn];
bool judge(int i)
{
    return i & (i << 1);
}
bool judge2(int x, int y)
{
    return maps[x] == (maps[x]|ok[y]);//0 表示不可以 1 表示行
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF && n)
    {
        memset(maps,0,sizeof(maps));
        for(int i=0; i<n; i++)
            for(int j=0; j<m; j++)
            {
                int x;
                scanf("%d",&x);
                if(x == 1)
                    maps[i] += (1 << j);//用二进制存储每一行肥沃土地的样子 100101 转化成十进制
            }
        int cnt = 0;
        for(int i=0; i<(1<<m); i++)//找出所有满足条件的数字
            if(!judge(i))
                ok[cnt++] = i;
        memset(dp,0,sizeof(dp));
        for(int i=0; i<cnt; i++)
        {
            if(judge2(0,i))
                dp[0][i] = 1; //确定第一行有哪几种可以放的方式
        }
        for(int i=1; i<n; i++)
        {
            for(int j=0; j<cnt; j++)
            {
                if(!judge2(i,j)) continue;
                for(int k=0; k<cnt; k++)//表示这种摆的方式在第i行可以,还要和第i-1行判断
                {
                    if(!(ok[j]&ok[k]))
                        dp[i][j] += dp[i-1][k];
                }
            }
        }
        long long  ans = 0;
        for(int i=0; i<cnt; i++)
        {
            ans += dp[n-1][i];
            ans %= mod;
        }
        printf("%lld\n",ans);
    }
}


展开阅读全文

没有更多推荐了,返回首页