链接:https://ac.nowcoder.com/acm/contest/5477/A
题目描述
天才程序员菜哭武和张老师有一天到一个城市旅游,旅途中菜哭武觉得无聊就想和张老师玩一个游戏。菜哭武有n个石子,每个石子都标有1到n之间到数,且各不相同,一开始他们会随机从这堆石子选一个石子放置到一个集合中,张老师选的数是a,菜哭武选的是b(a和b不相同)。接下来菜哭武和张老师轮流按照如下规则拿走一个石子:当石子x能被拿走时,当且仅当集合存在y和z,满足x等于y+z或者y-z,当x被拿走时,把它放到集合中。谁完成最后一轮操作时,谁获胜。张老师总是先手,于是张老师就好奇当决定好a和b时,他是否总是能获胜,你能帮助一下张老师吗?
输入描述:
第一行一个整数T(1≤T≤500),表示共有T组测试数据。
对于每组测试数据,第一行三个整数n(2≤n≤20000)、a和b(1≤a,b≤n, a≠b)。
输出描述:
若张老师能获胜输出Yes,反之No。
输入
16
2 1 2
3 1 3
67 1 2
100 1 2
8 6 8
9 6 8
10 6 8
11 6 8
12 6 8
13 6 8
14 6 8
15 6 8
16 6 8
1314 6 8
1994 1 13
1994 7 12
输出
No
Yes
Yes
No
No
No
Yes
Yes
No
No
Yes
Yes
No
Yes
No
No
题解
这不是一个NIM博弈题目,就是一个数学题吧。题意也就是让我们从a,b按a+b,a-b,看能推出来多少个数,如果推出来奇数个,那张老师赢,推出来偶数个,菜哭武赢
假设b>a,如果b%a==0,那么a就是能拿出来的数字的最小公差,也就是最后拿出来的数字模式为,a,2a,3a……。
如果b%a!=0,那么我们需要找到最小公差,这样我们最后经过加或减运算得到的数字个数才最多。
对于每一步计算我们可以得到比a小的数x=a-(b%a)
比如a=3,b=7,n=10.
x=3-(7%3)=2,{3 4 7}
x=3-(4%3)=2,{1 3 4 7}
此时a=1,b=3,b%a=0回到了情况1,{1 2 3 4 7}
最终全部选择{1 2 3 4 5 6 7 8 9 10}
我们可以发现,在求最小公差的时候,我们的其实就是在求a,b的最大公约数
int gcd(int a,int b){
if(a<b)//保证后面辗转相除时a>b
{//位运算交换两数
a=a^b;
b=a^b;
a=a^b;
}
while(b!=0)
{
r=a%b;
a=b; / /循环求余数
b=r;
}
return a;
}
gcd(a,b)的倍数,(gcd(a,b)表示a,b的最大公约数,不懂的话点击蓝字看博文)
最大公约数和最小公倍数博文
我们只需要看n/gcd(a,b)的奇偶即可,是奇数,则张老师赢,是偶数,则菜哭武赢
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int gcd(int a, int b)//求最大公约数
{
return b == 0 ? a : gcd(b, a % b);
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
int T;
cin >> T;
while (T--)
{
int n, a, b;
cin >> n >> a >> b;
int x = gcd(a, b);
if ((n / x) & 1) cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}