GSL中的离散汉克尔变换

本文介绍了离散汉克尔变换(DHT),它是基于固定阶贝塞尔函数零点的采样数据变换。DHT与离散傅里叶变换不同,其采样点与贝塞尔函数相关。变换定义了汉克尔矩阵,该矩阵用于计算离散函数的变换。GSL库提供了计算DHT的功能,包括对象分配、初始化和应用变换的方法。离散汉克尔变换适用于在特定区间内满足Dirichlet条件的函数的正交展开。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散汉克尔变换

    本章描述进行离散汉克尔变换(Discrete Hankel transformation, DHTs)的函数。这些函数声明在头文件gsl_dht.h中。

35.1 定义

    离散的汉克尔变换作用于采样数据的向量,其中样本被假定在与固定阶贝塞尔函数的零点相关的点上取;将它与离散傅里叶变换的情况相比较,在离散傅里叶变换中,采样点与正弦或余弦函数的零点有关。

    从它的定义开始,函数f 定义为一个ν阶汉克尔变换(或贝塞尔变换),其中ν >−1/2,(见Johnson, 1987和Lemoine, 1994)

     如果该积分存在,Fν 被称为的f汉克尔变换。逆变换由下式给出,

其中0f(t)t1/2dt 必须存在且绝对收敛,且f(t)在区间[0,∞]内满足Dirichlet条件(总波动有限)。

现在,离散汉克尔变换作用于一个离散函数f,它在点n = 1…M采样,其在实空间位置tn = (jν,n/,M)X,在倒数空间中的位置un =,n/X。这里,,m是按升序排列的贝塞尔函数 (x)的第m个零。此外,假设离散函数是带限的,因此对于n > M, f(tn) = 0, f(un) = 0。因此,函数f在区间[0,X]上定义的。

根据Johnson, 1987和Lemoine, 1994的工作,离散汉克尔变换定义如下,

     正是这个离散表达式定义了GSL计算的离散汉克尔变换。在GSL中,正向和反向变换是相等定义的,并计算(um)。根据Johnson,反向转换读取

     显然,使用正向转换而不是反向转换将得到一个额外的因数X4/jv,M2=tm2/um2

上述求和中的核心定义了M−1的ν汉克尔变换矩阵。这个矩阵的系数依赖于ν和M,必须预先计算并存储;gsl_dht对象封装了这个数据。分配函数gsl_dht_alloc()返回一个gsl_dht对象,该对象必须使用gsl_dht_init()正确初始化,然后才能用于对数据样本向量执行转换,对于固定的ν和M,使用gsl_dht_apply()函数。为了方便,实现允许定义基本区间的长度X,而离散汉克尔变换通常定义在单位区间上,而不是[0,X]。

注意,假设f(t)在区间的端点处消失,这与反演公式和上面给出的抽样公式一致。因此,该变换对应于贝塞尔微分方程Dirichlet问题本征函数的正交展开。

35.2 函数

gsl_dht

计算离散汉克尔变换的工作空间。

gsl_dht * gsl_dht_alloc(size_t size)

    本函数分配了一个大小为size的离散汉克尔变换对象。

int gsl_dht_init(gsl_dht * t, double nu, double xmax)

    本函数用给定的nu和xmax值初始化变换t。

gsl_dht * gsl_dht_new(size_t size, double nu, double xmax)

    本函数分配一个大小为size的离散汉克尔变换对象,并根据给定的nu和xmax值对其进行初始化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值