如何理解最大化最小值问题和最小化最大值问题

min-max和max-min在优化问题中比较常见,一句话说:min-max是为了压制优化目标中表现最突出的成分,max-min为了提升优化目标中表现最差的成分。为了把这两个问题作一个比较通俗的解释,方便笔者和各位读者对此问题有更直观的理解。

(一)min-max问题

先理解这个问题,借用之前看到的一个例子:考虑规划城市中急救中心或者消防中心的建造位置,目标约束函数应该是到城市中各个房屋最大距离的最小值,而不是到达所有目的地距离和的最小值。简单地说就是前者考虑如何降低最恶劣情况的影响,后者考虑整体的联合优化。因为整个城市同时着火几率极低的,所以建模的时候更倾向于考虑前者这样的模型。

(二)max-min问题

这个问题再通信链路中应用比较多,如基站同时和多用户通信,每个基站到用户的通信为一个通信链路,且基站的发射功率是固定的。为了保证所有的通信链路都正常工作,应该去优化最差链路的通信情况,降低信道较好链路的基站发射功率,增加信道较差链路的基站发射功率,这是一个最大化最小值问题。

 

 

"最大化最小值"或"最小化最大值"问题的函数曲线一般是非常复杂的,因为目标函数可以是任意的函数。但是,我们可以通过一个简单的例子来理解这类问题的函数曲线。 假设我们要在一个一维数组中找到一个最大的数 x,使得数组中所有数都不小于 x。我们可以将这个问题转化为一个函数 f(x) 的形式,其中 f(x) 表示 "数组中所有数都不小于 x" 这个条件是否成立。具体地,如果数组中存在一个数小于 x,则 f(x) 为 false,否则 f(x) 为 true。 这个函数的曲线是一个阶梯状的函数,如下图所示: ``` | | | | | | | | |___|___|___|___ x1 x2 x3 x4 ``` 其中,每个竖直的线段表示一个数组元素,x1、x2、x3、x4 分别表示四个元素的值,每个水平的线段表示函数值为 true 的区间。例如,当 x 取值在 [x3, x4] 区间内时,f(x) 的值都为 true,因为数组中所有元素的值都不小于 x3。 在这个例子中,我们要找到的最大的 x,就是最后一个函数值为 true 的点所对应的 x 值,即 x4。这个问题可以通过二分查找法解决,每次取中间值,判断中间值是否满足条件,然后不断缩小搜索区间,最终找到最大的 x 值。 类似的,对于"最小化最大值"问题,我们可以构造一个类似的函数,表示所有满足条件的最大值是否小于等于 x。这个函数的曲线也是一个阶梯状的函数,但是是逆向的,即从右上方向左下方延伸。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值