PAT 1128. N Queens Puzzle (20)

1128. N Queens Puzzle (20)

时间限制
300 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1, Q2, ..., QN), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

 
Figure 1
 
Figure 2

Input Specification:

Each input file contains several test cases. The first line gives an integer K (1 < K <= 200). Then K lines follow, each gives a configuration in the format "N Q1 Q2 ... QN", where 4 <= N <= 1000 and it is guaranteed that 1 <= Qi <= N for all i=1, ..., N. The numbers are separated by spaces.

Output Specification:

For each configuration, if it is a solution to the N queens problem, print "YES" in a line; or "NO" if not.

Sample Input:
4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4
Sample Output:
YES
NO
NO
YES
 
 
开俩mark数组,一个标记访问过的行,一个标记访问过的对角线。注意对角线要开2*n大小
 
 
#include <iostream>
#include<stdio.h>
#include<queue>
#include<algorithm>
#include<vector>
#include<string>
#include<string.h>
#include<set>
#include<deque>
#include<queue>
using namespace std;

int path[1005];
int row[1005];
int diagonal[2005];

int main()
{
   int k; cin>>k;
   while(k--)
   {
       int n;cin>>n;
       memset(row,0,sizeof(row));
       memset(diagonal,0,sizeof(diagonal));
       for(int i=0;i<n;i++)
       cin>>path[i];
       int flag=0;
       for(int i=0;i<n;i++)
       {
           int dia=i+path[i];
           if(diagonal[dia]==1||row[path[i]]==1)
           {
               flag=1;break;
           }
           diagonal[dia]=row[path[i]]=1;
       }
       if(flag==1) cout<<"NO";
       else cout<<"YES";
       cout<<endl;
   }

   return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值