1128. N Queens Puzzle (20)
The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)
Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1, Q2, ..., QN), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.
|
| |
|
|
Input Specification:
Each input file contains several test cases. The first line gives an integer K (1 < K <= 200). Then K lines follow, each gives a configuration in the format "N Q1 Q2 ... QN", where 4 <= N <= 1000 and it is guaranteed that 1 <= Qi <= N for all i=1, ..., N. The numbers are separated by spaces.
Output Specification:
For each configuration, if it is a solution to the N queens problem, print "YES" in a line; or "NO" if not.
Sample Input:4 8 4 6 8 2 7 1 3 5 9 4 6 7 2 8 1 9 5 3 6 1 5 2 6 4 3 5 1 3 5 2 4Sample Output:
YES NO NO YES
开俩mark数组,一个标记访问过的行,一个标记访问过的对角线。注意对角线要开2*n大小
#include <iostream> #include<stdio.h> #include<queue> #include<algorithm> #include<vector> #include<string> #include<string.h> #include<set> #include<deque> #include<queue> using namespace std; int path[1005]; int row[1005]; int diagonal[2005]; int main() { int k; cin>>k; while(k--) { int n;cin>>n; memset(row,0,sizeof(row)); memset(diagonal,0,sizeof(diagonal)); for(int i=0;i<n;i++) cin>>path[i]; int flag=0; for(int i=0;i<n;i++) { int dia=i+path[i]; if(diagonal[dia]==1||row[path[i]]==1) { flag=1;break; } diagonal[dia]=row[path[i]]=1; } if(flag==1) cout<<"NO"; else cout<<"YES"; cout<<endl; } return 0; }