数学分析:k维曲面

这部分比较抽象,我就不按照书本上的定义来了,直接讲直观的理解。

一般来说,我们认为:

x^2+y^2=1 这是一个圆,

但同时也可以认为他是一个一维的曲面。

同理

x^2+y^2+z^2=1是一个球面

但同时也是一个二维的曲面,依次类推。

我们写出一个参数方程:

\left\{\begin{matrix} x=rsina\\ y=rcosa \end{matrix}\right.

r是常数,a是参数,那么a就可以有自己的参数域(0,2π),注意,这是个开集,会挖掉一个点。

那么它的有效域也就少了一个点(0,r)

而这个映射本身就是一个图,因为少了一个点,所以无法用一个图来覆盖整个曲面。所以这不是一个初等曲面。需要再增加一个图,两个图形成一个图册,覆盖整个曲面。

三维也是如此,只是参数方程更加复杂。

一般的:

这就是Rn空间中的一个k维曲面。前提是雅克比矩阵行列式不为0.

中间插入了一点线性代数的知识。

假设两个空间中的基向量是v1,v2,   w1,w2.

那么那么的基变换矩阵是A。

可以得到w1 = Av1,   w2 = Av2

按照我们对线性代数的理解,应该是这样:

                      v1       v2

       \begin{pmatrix} w1\\ w2 \end{pmatrix}    \begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix}

这个矩阵是从V空间变换到W空间,从计算上来说,

v1 = a11w1 + a21w2

所以,按照乘法运算,应该是AT

| a11  a21|

|a12   a22|   和向量(w1, w2)相乘

那么就是 a11w1 + a21w2,  a12w1+ a22w2, 刚好是v1, v2

所以,矩阵变换把空间坐标v变到空间坐标w,而它的转置,则把基向量w变到基向量v

这里,我们还是重点来理解下线性变换,而不是坐标变换。

参考:线性变换与基变换是什么关系?是一个矩阵的两种理解角度么? - 知乎

重点在于,对于原来的一组基,线性变换可以把这组基变成另外一组基。那么如果都考虑在原始的基下面,坐标变换是如何的呢?

我们假设这个线性变换的矩阵是A,

原始向量v,在基下的坐标是X

那么经过线性变换后,在基下的坐标是Y

我们要找到X和Y的关系。

显然,Y=AX

直观的理解就是,如果基不变,那么线性变换代表的矩阵就是坐标变换。

 

 

两两相容的意思是公共作用域上的相互转换的雅克比行列式为正。

 

这里要注意,莫比乌斯环的法向量场是不存在的,因为饶了一圈之后,它的法线就反了。 

 

要注意,这里面的偏导符号是边界的意思。

 

第一个图册是边界和内点的集合。R^k是这个曲面内点微分同胚的部分。 

 

H^k是R^k的半空间。

所以边界首先是R^(k-1),因为它要低一维,同时它的映射要被限制到边界本身上即可。

 

 

这个证明挺有意思的。考虑一个函数y=f(x1,x2,x3), 当x1=0的时候,y=0.

那么求当x1=0的时候y对x1,x2,x3的偏导。这个要从求导的本质来思考。首先当x1=0的时候,y=0,此时不论x2,x3怎么变换,y始终是0,也就是y对他们的变化率是0.所以y对x2,x3的求导就是0. 而如果把x1看成未知数,那么知道一个点的值并不能知道具体的导数。所以答案未知。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yxriyin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值