一致收敛性想要解决的问题是,对于取极限的函数族,和原始函数之间的一些一致性关系。
这是一个绝妙的例子。有x和t两个未知数,当t趋向于0的时候,f(x)=0. 不论x取什么值,都是成立的。这个很妙,里如x很小,但因为t趋向于0,所t一定能比x更小。也就是说,在这种情况下,f(x)就是一个恒为0的函数。然而,这个函数的函数族中,最大值并不是0.也就是说,虽然t趋向于0,但在任何t的基内,x都可以取到一个值,就是x=t,它不为0.
这个理论虽然看上去有点奇怪,但也是为了解决一些问题。对于一些复杂的函数或者非初等函数,我们要做微分和积分是困难的。这个时候如果可以展开成幂级数,那么自然就可以进行相对简单的微分积分操作。但是前提是我们需要证明这个级数是收敛的。或者是一致收敛的,这样我们才好进行积分和微分的极限交换操作。
这个积分的结果不是初等函数,我们可以用麦克老林级数展开,同时证明这个级数是一致收敛的。