- 博客(104)
- 收藏
- 关注
原创 point_pn3
FPS# kNNdepth=12,):Block(x = blk(x)return xexpand = 2expand = 1# Linear# Linear# Pooling# )self.actself.act# Weigh# FPS, kNN# Poolingreturn x。
2024-11-09 17:04:02 756
原创 point_nn2_1109
FPS# kNNdepth=12,):Block(x = blk(x)return xexpand = 2expand = 1# Linear# Linear# Pooling# )self.actself.act# Weigh# FPS, kNN# Poolingreturn x。
2024-11-09 11:40:03 794
原创 main的修改
parser.add_argument('--disc_ckpt', type=str, default='pretrained/Discriminator.pth', help='鉴别器预训练权重路径')parser.add_argument('--gen_ckpt', type=str, default='pretrained/CIPSAtt.pth', help='生成器预训练权重路径')img_gen_clamped = img_gen.clamp(0, 1) # 将生成的图像限制在0到1之间。
2024-11-08 23:44:42 272
原创 run_pn_mn40_1.py
import osimport os])else:print(str)# Modelelse:printf(printf(total = 0return {net.eval()total = 0return {main()
2024-11-08 22:20:35 904
原创 point_nn2
FPS# kNNdepth=12,):Block(x = blk(x)return xexpand = 2expand = 1# Linear# Linear# Pooling# )self.actself.act# Weigh# FPS, kNN# Poolingreturn x。
2024-11-08 17:56:58 897
原创 point_pn1_Attention
FPS# kNNdepth=12,):Block(x = blk(x)return xexpand = 2expand = 1# Linear# Linear# Pooling# )self.actself.act# Weigh# FPS, kNN# Poolingreturn x。
2024-11-08 09:44:59 875
原创 point_pn1
FPS# kNNexpand = 2expand = 1# Linear# Linear# Poolingself.actself.act# Weigh# FPS, kNN# Poolingreturn xreturn xreturn x。
2024-11-08 09:06:10 671
原创 pointnet3
FPS# kNN# Poolingnn.GELU())# Weigh# FPS, kNN# Poolingreturn xreturn x。
2024-11-07 09:57:36 471
原创 pointnet2
FPS# kNN# Poolingnn.GELU())# Weigh# FPS, kNN# Poolingreturn xreturn x。
2024-11-07 09:53:42 715
原创 pointnet02
FPS# kNN# Poolingnn.GELU(),# Weigh# FPS, kNN# Poolingreturn xreturn x。
2024-11-07 09:42:52 503
原创 20241105demo6
return embreturn x# diff])return outreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:if adjust:else:return outelse:return out。
2024-11-05 21:16:55 677
原创 sdnet
########################## 空间注意力机制 ###########################running_loss += loss.item() # 累加损失以计算平均损失。# 实例化学习率调度器 #diff 添加学习率调度器。# 使用 kaiming_normal_ 进行初始化。# 实例化学习率调度器 #diff 添加学习率调度器。# 注册钩子 #diff 注册前向钩子以提取特征图。# 实例化模型、损失函数和优化器。# 重新实例化模型以确保权重是新的。
2024-11-04 14:22:44 413 1
原创 gl2222
img_name = row['ID'] + '.png' # 添加扩展名。# 创建一个ImageDataGenerator用于加载和预处理图像。# 输入参数:图像文件目录和骨龄信息CSV文件路径。# 使用 sklearn 自动划分训练集和验证集。# 将整数值转换为浮点数,以便进行后续处理。# 提取InceptionV3的最后一层。# 确保id列的值为字符串类型。# 创建训练和验证数据生成器。# 定义早停和学习率衰减回调。# 读取骨龄信息CSV文件。# 添加额外的全连接层。
2024-11-03 19:42:53 354
原创 gulingmae
print(f"训练集样本数: {len(train_subset)}, 验证集样本数: {len(val_subset)}")print(f"Val MAE 未改善 ({trigger_times}/{patience})")print(f"最佳模型已保存 (Val MAE: {best_val_mae:.4f})")print(f"训练完成,最佳验证 MAE: {best_val_mae:.4f}")print(f"总样本数: {len(dataset)}")print("准备数据集...")
2024-11-03 10:57:26 651
原创 guling1103
print(f"训练集样本数: {len(train_subset)}, 验证集样本数: {len(val_subset)}")print(f"Val Loss 未改善 ({trigger_times}/{patience})")print(f"最佳模型已保存 (Val Loss: {best_val_loss:.4f})")print(f"训练完成,最佳验证损失: {best_val_loss:.4f}")print(f"无法处理图像 {img_path}: {e}")也可以结合 StepLR。
2024-11-03 10:14:23 841
原创 glguling
feature_extractor = nn.Sequential(*list(resnet.children())[:-1]) # 移除最后一层。print(f"Val Loss 未改善 ({trigger_times}/{patience})")print(f"最佳模型已保存 (Val Loss: {best_val_loss:.4f})")print(f"训练集样本数: {len(X_train)}, 验证集样本数: {len(X_val)}")print("提取图像特征...")
2024-11-02 20:02:03 771
原创 gl预测ll
feature_extractor = nn.Sequential(*list(resnet.children())[:-1]) # 移除最后一层。feature_extractor = nn.Sequential(*list(resnet.children())[:-1]) # 移除最后一层。print(f"最佳模型已保存 (Val Loss: {best_val_loss:.4f})")print(f"训练集样本数: {len(X_train)}, 验证集样本数: {len(X_val)}")
2024-11-01 22:15:14 437
原创 corediff_ud
return embreturn x# diff])return outreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:if adjust:else:return outelse:
2024-10-31 09:23:31 558
原创 dcgan
labels_file = r"C:\Users\sun\Desktop\2024102201\1\labels.txt" # 标签文件路径。output_dir = r"C:\Users\sun\Desktop\2024102201\out" # 生成图像保存路径。noise_dim = 100 # 噪声维度。label_dim = 58 # 标签维度。batch_size =8 # 批大小。
2024-10-30 21:49:46 638
原创 corediff2
return embreturn outif in_ch!= out_ch:else:return x# diff])return outreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:
2024-10-30 21:42:24 1102
原创 corediffpro
return embreturn x# diff])return outreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),
2024-10-30 20:08:28 725
原创 rescorediff
return emb# diff) # diffreturn xreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:if adjust:else:return outelse:return out。
2024-10-30 13:21:38 810
原创 myyolotest
self.model = YOLO(r'C:\Users\sun\Desktop\20241026\yolov8\ultralytics-main\runs\detect\train12\weights\best.pt') # 加载预训练权重。self.image = self.image.resize((600, 600)) # 将图像大小固定为600x600。self.image_label.place(x=x, y=y) # 将图片放置在界面中心位置。# 计算图片显示位置使其位于界面中心。
2024-10-27 15:05:08 419
原创 codediff
return embreturn x# diff])return outreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:if adjust:else:return outelse:return out。
2024-10-27 11:24:16 497
原创 10251513
return emb# 输入为CHW# 应用注意力模块return xreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:if adjust:else:return outelse:
2024-10-25 15:13:24 229
原创 10251114
labels_file = r"C:\Users\sun\Desktop\2024102201\1\labels.txt" # 标签文件路径。output_dir = r"C:\Users\sun\Desktop\2024102201\out" # 生成图像保存路径。noise_dim = 100 # 噪声维度。label_dim = 58 # 标签维度。batch_size =8 # 批大小。
2024-10-25 11:15:09 522
原创 10251024
return embif in_ch!= out_ch:else:out += resreturn outreturn xreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:if adjust:else:
2024-10-25 10:24:21 259
原创 10250950
labels_file = "/Users/sunmingzheng/Downloads/2024102201/1/labels.txt" # 标签文件路径。output_dir = "/Users/sunmingzheng/Downloads/2024102201/out" # 生成图像保存路径。noise_dim = 100 # 噪声维度。label_dim = 58 # 标签维度。batch_size = 8 # 批大小。
2024-10-25 09:50:23 370
原创 2024102302
labels_file = "D:/PycharmProjects/GAN/traffic sign datasets/CTSDB/resized_images/BorderlineSMOTE -insepct/labels.txt" # 标签文件路径。output_dir = "D:/PycharmProjects/GAN/traffic sign datasets/CTSDB/resized_images/MMSGAN" # 生成图像保存路径。label_dim = 58 # 标签维度。
2024-10-23 09:40:58 234
原创 2024102301
from keras import Inputfrom keras.layers import Conv2D, MaxPooling2D, Dropout, BatchNormalizationfrom keras.layers import concatenate, Conv2DTranspose, Activationfrom keras.models import Modelfrom tensorflow.keras.optimizers import Adamdef Enhanced
2024-10-23 08:44:07 269
原创 202410221
labels_file = "D:/PycharmProjects/GAN/traffic sign datasets/CTSDB/resized_images/BorderlineSMOTE -insepct/labels.txt" # 标签文件路径。output_dir = "D:/PycharmProjects/GAN/traffic sign datasets/CTSDB/resized_images/MMSGAN" # 生成图像保存路径。label_dim = 58 # 标签维度。
2024-10-22 18:35:32 437
原创 20241022_01
from keras import Inputfrom keras.layers import Conv2Dfrom keras.layers import MaxPooling2Dfrom keras.layers import Dropoutfrom keras.models import Modelfrom keras.layers import concatenatefrom tensorflow.keras.optimizers import Adamfrom keras.layer
2024-10-22 18:22:37 286
原创 102202
return embreturn x# diff])return outreturn xdim = 32nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),nn.GELU(),if adjust:else:if adjust:else:if adjust:else:if adjust:else:return outelse:return out。
2024-10-22 12:08:13 225
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人