
知识图谱+RAG
文章平均质量分 90
华东设计之美
初学者
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Transformer架构学习
Transformer的核心逻辑是通过自注意力机制来完成对输入序列的建模;自注意力机制则是通过计算语句中各个位置的权重值来完成对输入sequence的区分和编码;而传统的RNN(循环神经网络)和CNN(卷积神经网络)对比Transformer则显得相对笨重;RNN一般用于处理序列数据,通过隐藏状态递归的传递消息,捕捉序列在一定状态时间变化下的逻辑变化,例如LSTM;而GNN一般是用于处理图结构数据,例如知识图谱等,通过节点间的相邻关系进行数据传递;Transformer底层逻辑核心:自注意力机制。原创 2025-06-02 20:31:50 · 659 阅读 · 0 评论 -
Neo4j初解
Neo4j 是目前应用非常广泛的一款高性能的 NoSQL 图数据库,其设计和实现专门用于存储、查询和遍历由节点(实体)、关系(边)以及属性(键值对)构成的图形数据模型。它的核心优势在于能够以一种自然且高效的方式表示和处理极其复杂的关系网络,从而克服传统关系型数据库(RDBMS)在多表 JOIN 查询中性能急剧下降的问题。也可以通过docker进行部署。原创 2025-04-17 01:19:29 · 1607 阅读 · 0 评论 -
知识图谱+RAG学习
GraphRAG(Graph-based Retrieval-Augmented Generation)是微软在2024年推出的一项开源技术,旨在通过结合知识图谱和检索增强生成(RAG)方法,为大型语言模型(LLM)的数据处理提供全新解决方案。GraphRAG在RAG的基础上加入图结构信息,使得模型不仅能“查找到正确答案”,还可以通过图分析理解“答案之间的关系”。GraphRAG支持跨领域的多模态数据整合,无论是文本、图像还是结构化数据,都能构建统一的知识图谱,并实现推理。原创 2024-12-23 23:01:55 · 690 阅读 · 0 评论