数值计算(科学与工程计算基础)知识点总结

注:考试时间2h,闭卷,可以带计算器,题型:选择、填空、计算、证明

数值计算

第1章 概论

1.2 数值计算中的误差

1.2.1 误差的来源和分类

误差类型介绍示例
模型误差建立数学模型过程中,要将复杂的现象抽象归结为数学模型,往往要忽略一些次要因素的影响,而对问题作一些简化,因此和实际问题有一定的区别。地球的体积使用球体体积公式 v = 4/3 Π R3 来近似计算
观测误差建模和具体运算过程中所用的数据往往是通过观察和测量得到的,由于精度的限制,计算这些数据一般是近似的观测地球半径R的值
截断误差方法误差当数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解与精确解之间的误差称为截断误差或方法误差使用泰勒公式来计算可微函数某点值,其截断误差为泰勒余项
舍入误差由于计算机字长有限,原始数据在计算机上表示时产生的误差Π 用 3.1415926 来近似、4/3 用 1.333333 来近似

1.2.2 误差与有效数字

误差定义示例
绝对误差(e*)设 x 为准确值,x* 为 x 的一个近似值,称 e* = x* - x 为近似值的绝对误差,简称误差一般无法测量出精确值,所以绝对误差一般无法表示
绝对误差限(ε*)估计出绝对误差的一个上界 ε* ,即:| e* | = | x* - x | ≤ ε*测量某物品的长度为 20 ± 0.5 cm,则其绝对误差限为 0.5 cm
相对误差 e r ∗ e^*_ {r} er 绝对误差 精确值 ,即: e r ∗ = e ∗ x = x ∗ − x x \frac{绝对误差}{精确值},即:e^*_ {r}=\frac{e^*}{x}=\frac{x^*-x}{x} 精确值绝对误差,即:er=xe=xxx 实际中精确值 x 是未知的,故常用 绝对误差 近似值 ,即: e r ∗ = e ∗ x ∗ = x ∗ − x x ∗ \frac{绝对误差}{近似值} ,即:e^*_ {r}=\frac{e^*}{x^*}=\frac{x^*-x}{x^*} 近似值绝对误差,即:er=xe=xxx e r ∗ e^*_ {r} er 较小时,此时 在这里插入图片描述 是 e r ∗ 的平方项级,故可以忽略不计,所以可以使用 e ∗ x ∗ 代替 e ∗ x 是 e^*_ {r} 的平方项级,故可以忽略不计,所以可以使用 \frac{e^*}{x^*} 代替 \frac{e^*}{x} er的平方项级,故可以忽略不计,所以可以使用xe代替xe
相对误差限 ε r ∗ ε^*_ {r} εr相对误差的上界 ε r ∗ ε^*_ {r} εr,即: ε r ∗ = ε ∗ ∣ x ∗ ∣ ε^*_ {r} = \frac{ε^*}{|x^*|} εr=xε测量某物品的长度为 20 ± 0.5 cm,则其相对误差限为 2.5%
有效数字示例
定义在这里插入图片描述对于 Π=3.1415926… ,x* = 3.14有3位有效数字;x* = 3.1416 则有5为有效数字;而 x* = 3.1415 则只有4为有效数字,其误差超过了5所在位置的半个单位,而不超过1所在的位置的半个单位,故只有4位有效数字。
科学计数表示在这里插入图片描述12300 有5位有效数字,如果写成 1.23 × 104 则只有3位有效数字。
定理在这里插入图片描述在这里插入图片描述

易错题:【不是四舍五入的近似值,要注意】
0.9999是1的近似值,问0.9999有几位有效数字?
| 1 - 0.9999 | = 0.0001 < 0.5 × 103,所以有3位有效数字。

1.2.3 数值运算的误差估计

函数(绝对)误差限 ε ∗ ( f ) ≈ ε^*( f )≈ ε(f)相对误差限 ε r ∗ ( f ) ≈ ε^*_r( f )≈ εr(f)
一元函数 f(x)| f(x)’ | ε*(x)ε*( f(x) ) / f(x)
多元函数 f(x1, …, xn) ∑ 1 n ∣ ∂ f ∂ x i ∣ ε ∗ ( x i ) \sum_1^n |\frac{\partial f}{\partial x_i}| ε^*(x_i) 1nxifε(xi)ε*( f(x1, …, xn) ) / f(x1, …, xn)

示例
在这里插入图片描述
请添加图片描述

1.3 误差定性分析和避免误差危害

1.3.1 算法的数值稳定性

问题描述
不稳定算法在这里插入图片描述
病态方程组在这里插入图片描述

1.3.3 避免误差危害

问题描述措施
大数吃小数在这里插入图片描述在这里插入图片描述
相近数相减在这里插入图片描述在这里插入图片描述 例如: 1 − c o s ( ε ) = 2 s i n 2 ( ε 2 ) ; 例如:1 - cos(ε) = 2 sin^2(\frac{ε}{2}) ; 例如:1cos(ε)=2sin2(2ε);在这里插入图片描述
除小数和乘大数在这里插入图片描述尽量避免

1.4 数值计算中算法设计的技术

算法示例
快速幂算法在这里插入图片描述
秦九韶算法在这里插入图片描述

1.5 习题

1.5.1 判断题

  1. 解对数据的微小变化高度敏感是病态的。【对】
  2. 高精度运算可以改善问题的病态性。【错,病态是问题本身固有的,无法通过提高精度运算来改善】
  3. 无论问题是否病态,只要算法稳定都能得到好的近似值。【错,只有良态情况下,稳定的算法才有可能得到好的近似值】
  4. 用一个稳定的算法计算良态问题一定会得到好的近似值。【错,得到好的近似值还与初始值的选取有关,例如:牛顿法】
  5. 用一个收敛的迭代法计算良态问题一定会得到好的近似值。【错,得到好的近似值还与初始值的选取有关,例如:牛顿法】
  6. 两个相近数相减必然会使有效数字损失。【错,只是大多情况下会使有效数字损失】
  7. 计算机上将1000个数量级不同的数相加,不管次序如何结果都是样的。【错,可能发生大数吃小数情况】

1.5.2 计算题

  1. 设 x > 0,x 的相对误差为δ,求ln x的误差。
  2. 设 x 的相对误差为2%,求 xn 的相对误差。
  3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:
       x 1 ∗ x^*_1 x1= 1.1021, x 2 ∗ x^*_2 x2= 0.031, x 3 ∗ x^*_3 x3= 385.6, x 4 ∗ x^*_4 x4= 56.430, x 5 ∗ x^*_5 x5=7 × 1.0【 x 5 ∗ x^*_5 x5比较奇怪,没有参考意义】
  4. 求下列各近似值的误差限:
    (1) x 1 ∗ + x 2 ∗ + x 4 ∗ x^*_1+x^*_2+x^*_4 x1+x2+x4
    (2) x 1 ∗ x 2 ∗ x 3 ∗ x^*_1x^*_2x^*_3 x1x2x3
    (3) x 2 ∗ / x 4 ∗ x^*_2/x^*_4 x2/x4
    其中 x 1 ∗ , x 2 ∗ , x 3 ∗ , x 4 ∗ x^*_1,x^*_2,x^*_3,x^*_4 x1x2x3x4均为第3题所给的数。
  5. 计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少?
  6. 正方形的边长大约为100 cm,应怎样测量才能使其面积误差不超过1 cm2 ?
  7. 计算 f = ( 2 − 1 ) 6 f=(\sqrt{2}-1)^6 f=(2 1)6,取 2 ≈ 1.4 \sqrt{2}≈1.4 2 1.4,利用下列等式计算,哪一个得到的结果最好?
    1 ( 2 + 1 ) 6 , ( 3 − 2 2 ) 3 \frac{1}{(\sqrt{2}+1)^6},(3-2\sqrt{2})^3 (2 +1)61(322 )3
    1 ( 3 + 2 2 ) 3 , 99 − 70 2 \frac{1}{(3+2\sqrt{2})^3},99-70\sqrt{2} (3+22 )3199702

请添加图片描述

请添加图片描述

请添加图片描述

第2章 插值法

【已知:n+1个互异的节点(xi,yi)】
【求解:Pn(x)≈ f(x)】
【方法:插值法】

2.2&2.3 拉格朗日插值和牛顿插值

f n ( x ) 在 [ a , b ] 上连续, f n + 1 ( x ) 在 ( a , b ) 上存在, a ≤ x 0 < x 1 < ⋅ ⋅ ⋅ < x n ≤ b , m a x a ≤ x ≤ b ∣ f n + 1 ( x ) ∣ = M n + 1 f^n(x)在[a,b]上连续,f^{n+1}(x)在(a,b)上存在,a\leq x_0 < x_1 < ··· <x_n \leq b,max_{a \leq x \leq b}|f^{n+1}(x)|=M_{n+1} fn(x)[a,b]上连续,fn+1(x)(a,b)上存在,ax0x1<⋅⋅⋅<xnbmaxaxbfn+1(x)=Mn+1

拉格朗日插值牛顿插值
基函数/差商表 l k ( x ) = ( x − x 0 ) ⋅ ⋅ ⋅ ( x − x k − 1 ) ( x − x k + 1 ) ⋅ ⋅ ⋅ ( x − x n ) ( x k − x 0 ) ⋅ ⋅ ⋅ ( x k − x k − 1 ) ( x k − x k + 1 ) ⋅ ⋅ ⋅ ( x k − x n ) l_k(x)=\frac{(x-x_0)···(x-x_{k-1})(x-x_{k+1})···(x-x_n)}{(x_k-x_0)···(x_k-x_{k-1})(x_k-x_{k+1})···(x_k-x_n)} lk(x)=(xkx0)⋅⋅⋅(xkxk1)(xkxk+1)⋅⋅⋅(xkxn)(xx0)⋅⋅⋅(xxk1)(xxk+1)⋅⋅⋅(xxn)引入记号 ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) ⋅ ⋅ ⋅ ( x − x n ) ω_{n+1}(x)=(x-x_0)(x-x_1)···(x-x_n) ωn+1(x)=(xx0)(xx1)⋅⋅⋅(xxn) ω n + 1 ′ ( x k ) = ( x k − x 0 ) ⋅ ⋅ ⋅ ( x k − x k − 1 ) ( x k − x k + 1 ) ⋅ ⋅ ⋅ ( x k − x n ) ω'_{n+1}(x_k)=(x_k-x_0)···(x_k-x_{k-1})(x_k-x_{k+1})···(x_k-x_n) ωn+1(xk)=(xkx0)⋅⋅⋅(xkxk1)(xkxk+1)⋅⋅⋅(xkxn) 则: l k ( x ) = ω n + 1 ( x ) ( x − x k ) ω n + 1 ′ ( x k ) 则:l_k(x)=\frac{ω_{n+1}(x)}{(x-x_k)ω'_{n+1}(x_k)} 则:lk(x)=(xxk)ωn+1(xk)ωn+1(x)在这里插入图片描述 f [ x 0 , x 1 , ⋅ ⋅ ⋅ , x k ] = f [ x 0 , ⋅ ⋅ ⋅ , x k − 2 , x k ] − f [ x 0 , ⋅ ⋅ ⋅ , x k − 2 , x k − 1 ] x k − x k − 1 f[x_0,x_1,···,x_k]=\frac{f[x_0,···,x_{k-2},x_k]-f[x_0,···,x_{k-2},x_{k-1}]}{x_{k}-x_{k-1}} f[x0,x1,⋅⋅⋅,xk]=xkxk1f[x0,⋅⋅⋅,xk2,xk]f[x0,⋅⋅⋅,xk2,xk1]【分子——各抠出不同的1个点然后相减,分母——不同的点相减】
插值多项式 L n ( x ) = ∑ k = 0 n y k l k ( x ) L_n(x)=\sum_{k=0}^ny_kl_k(x) Ln(x)=k=0nyklk(x) L n ( x ) = ∑ k = 0 n y k ω n + 1 ( x ) ( x − x k ) ω n + 1 ′ ( x k ) L_n(x)=\sum_{k=0}^ny_k\frac{ω_{n+1}(x)}{(x-x_k)ω'_{n+1}(x_k)} Ln(x)=k=0nyk(xxk)ωn+1(xk)ωn+1(x) P n ( x ) = f ( x 0 ) + ω 1 ( x ) f [ x 0 , x 1 ] P_n(x)=f(x_0)+ω_{1}(x)f[x_0,x_1] Pn(x)=f(x0)+ω1(x)f[x0,x1] + ω 2 ( x ) f [ x 0 , x 1 , x 2 ] + ⋅ ⋅ ⋅ + ω n ( x ) f [ x 0 , x 1 , ⋅ ⋅ ⋅ , x n ] +ω_{2}(x)f[x_0,x_1,x_2]+···+ω_{n}(x)f[x_0,x_1,···,x_n] +ω2(x)f[x0,x1,x2]+⋅⋅⋅+ωn(x)f[x0,x1,⋅⋅⋅,xn] P n ( x ) = f ( x 0 ) + ( x − x 0 ) f [ x 0 , x 1 ] P_n(x)=f(x_0)+(x-x_0)f[x_0,x_1] Pn(x)=f(x0)+(xx0)f[x0,x1] + ( x − x 0 ) ( x − x 1 ) f [ x 0 , x 1 , x 2 ] + ⋅ ⋅ ⋅ +(x-x_0)(x-x_1)f[x_0,x_1,x_2]+··· +(xx0)(xx1)f[x0,x1,x2]+⋅⋅⋅ + ( x − x 0 ) ⋅ ⋅ ⋅ ( x − x n − 1 ) f [ x 0 , x 1 , ⋅ ⋅ ⋅ , x n ] +(x-x_0)···(x-x_{n-1})f[x_0,x_1,···,x_n] +(xx0)⋅⋅⋅(xxn1)f[x0,x1,⋅⋅⋅,xn]
余项 R n ( x ) = f ( x ) − L n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) , ξ ∈ ( a , b ) R_n(x)=f(x)-L_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}ω_{n+1}(x),\xi\in(a,b) Rn(x)=f(x)Ln(x)=(n+1)!fn+1(ξ)ωn+1(x)ξ(a,b) R n ( x ) = f ( x ) − P n ( x ) = f [ x , x 0 , x 1 , ⋅ ⋅ ⋅ , x n ] ω n + 1 ( x ) , R_n(x)=f(x)-P_n(x)=f[x,x_0,x_1,···,x_n]ω_{n+1}(x), Rn(x)=f(x)Pn(x)=f[x,x0,x1,⋅⋅⋅,xn]ωn+1(x) ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)
误差限 ∣ R n ( x ) ∣ ≤ M n + 1 ( n + 1 ) ! ∣ ω n + 1 ( x ) ∣ |R_n(x)| \leq \frac{M_{n+1}}{(n+1)!} | ω_{n+1}(x) | Rn(x)(n+1)!Mn+1ωn+1(x) ∣ R n ( x ) ∣ ≈ ∣ f [ x ∗ , x 0 , x 1 , ⋅ ⋅ ⋅ , x n ] ω n + 1 ( x ) ∣ |R_n(x)| ≈ | f[x^*,x_0,x_1,···,x_n] ω_{n+1}(x) | Rn(x)f[x,x0,x1,⋅⋅⋅,xn]ωn+1(x)x* 为目标点或者任意其他点
拓展 当 f ( x ) = x k ( k ≤ n ) 时, f n + 1 ( x ) = 0 当f(x)=x^k(k\leq n)时,f^{n+1}(x)=0 f(x)=xk(kn)时,fn+1(x)=0 则 R n ( x ) = f ( x ) − L n ( x ) = x k − ∑ i = 0 n x i k l i ( x ) = 0 则R_n(x) =f(x)-L_n(x)=x^k-\sum_{i=0}^nx^k_il_i(x)=0 Rn(x)=f(x)Ln(x)=xki=0nxikli(x)=0 则 x k = ∑ i = 0 n x i k l i ( x ) , k = 0 , 1 , 2 , ⋅ ⋅ ⋅ , n 则 x^k=\sum_{i=0}^nx^k_il_i(x),k=0,1,2,···,n xk=i=0nxikli(x)k=0,1,2,⋅⋅⋅,n 特别的,当 k = 0 时, ∑ i = 0 n l i ( x ) = 1 特别的,当k=0时,\sum_{i=0}^nl_i(x)=1 特别的,当k=0时,i=0nli(x)=1一阶差商是两点的斜率,n阶差商有n+1个点 差商与节点的次序无关,即: f [ x 0 , x 1 , x 2 ] = f [ x 1 , x 2 , x 0 ] 差商与节点的次序无关,即:f[x_0,x_1,x_2]=f[x_1,x_2,x_0] 差商与节点的次序无关,即:f[x0,x1,x2]=f[x1,x2,x0] n 阶差商与导数的关系: f [ x 0 , x 1 , ⋅ ⋅ ⋅ , x n ] = f ( n ) ( ξ ) n ! , n阶差商与导数的关系:f[x_0,x_1,···,x_n]=\frac{f^{(n)}(\xi)}{n!}, n阶差商与导数的关系:f[x0,x1,⋅⋅⋅,xn]=n!f(n)(ξ) ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)

注:当有多个点可以选择时,优先选择点的区间包含目标点。

2.4 埃尔米特插值

给m+1个插值条件(含函数值和导数值),构造不超过m次埃尔米特插值多项式。

考试不用3函数值 + 1导数值 f ( x 0 ) , f ( x 1 ) , f ( x 2 ) , f ′ ( x 1 ) f(x_0),f(x_1),f(x_2),f'(x_1) f(x0),f(x1),f(x2),f(x1)2函数值+2导数值 f ( x 0 ) , f ( x 1 ) , f ′ ( x 0 ) , f ′ ( x 1 ) f(x_0),f(x_1),f'(x_0),f'(x_1) f(x0),f(x1),f(x0),f(x1)
构造多项式 先构造 3 个点的差商表 先构造3个点的差商表 先构造3个点的差商表 得到 f ( x 0 ) , f [ x 0 , x 1 ] , f [ x 0 , x 1 , x 2 ] 得到f(x_0),f[x_0,x_1],f[x_0,x_1,x_2] 得到f(x0)f[x0,x1]f[x0,x1,x2] 构造 H 3 ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) 构造H_3(x)=f(x_0)+f[x_0,x_1](x-x_0) 构造H3(x)=f(x0)+f[x0,x1](xx0) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) +f[x_0,x_1,x_2](x-x_0)(x-x_1) +f[x0,x1,x2](xx0)(xx1) + A ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) +A(x-x_0)(x-x_1)(x-x_2) +A(xx0)(xx1)(xx2) H 3 ( x ) = α 0 ( x ) f ( x 0 ) + α 1 ( x ) f ( x 1 ) H_3(x)=α_0(x)f(x_0)+α_1(x)f(x_1) H3(x)=α0(x)f(x0)+α1(x)f(x1) + β 0 ( x ) f ′ ( x 0 ) + β 1 ( x ) f ′ ( x 1 ) +β_0(x)f'(x_0)+β_1(x)f'(x_1) +β0(x)f(x0)+β1(x)f(x1) 其中 α 0 ( x ) , α 1 ( x ) , β 0 ( x ) , β 1 ( x ) 要满足: 其中α_0(x),α_1(x),β_0(x),β_1(x)要满足: 其中α0(x),α1(x),β0(x),β1(x)要满足: α i ( x j ) = { 1 i = j 0 i ≠ j , α i ′ ( x j ) = 0 α_i(x_j)=\begin{cases}1 & i=j \\ 0 & i ≠ j \end{cases},α_i'(x_j)=0 αi(xj)={10i=ji=jαi(xj)=0 β i ( x j ) = 0 , β i ′ ( x j ) = { 1 i = j 0 i ≠ j β_i(x_j)=0,β_i'(x_j)=\begin{cases}1 & i=j \\ 0 & i ≠ j \end{cases} βi(xj)=0βi(xj)={10i=ji=j
求解系数 对 H 3 ( x ) 求导,令 H 3 ′ ( x 1 ) = f ′ ( x 1 ) 对H_3(x)求导,令H_3'(x_1)=f'(x_1) H3(x)求导,令H3(x1)=f(x1) 解得 A = f ′ ( x 1 ) − f [ x 0 , x 1 ] − ( x 1 − x 0 ) f [ x 0 , x 1 , x 2 ] ( x 1 − x 0 ) ( x 1 − x 2 ) 解得A=\frac{f'(x_1)-f[x_0,x_1]-(x_1-x_0)f[x_0,x_1,x_2]}{(x_1-x_0)(x_1-x_2)} 解得A=(x1x0)(x1x2)f(x1)f[x0,x1](x1x0)f[x0,x1,x2] 构造 α i ( x ) = ( 1 + 2 l i ( x ) ) l j 2 ( x ) , 构造α_i(x)=(1+2l_i(x))l_j^2(x), 构造αi(x)=(1+2li(x))lj2(x) β i ( x ) = ( x − x i ) l j 2 ( x ) β_i(x)=(x-x_i)l^2_j(x) βi(x)=(xxi)lj2(x) 其中, l i ( x ) = x − x i x j − x i , i , j ∈ { 0 , 1 } & i ≠ j 其中,l_i(x)=\frac{x-x_i}{x_j-x_i},i,j\in\{0,1\} \& i≠j 其中,li(x)=xjxixxii,j{0,1}&i=j
余项 R ( x ) = 1 4 ! f ( 4 ) ( ξ ) ( x − x 0 ) ( x − x 1 ) 2 ( x − x 2 ) , R(x)=\frac{1}{4!}f^{(4)}(\xi)(x-x_0)(x-x_1)^2(x-x_2), R(x)=4!1f(4)(ξ)(xx0)(xx1)2(xx2) ξ 位于 x , x 0 , x 1 , x 2 所界定的范围内 \xi 位于x,x_0,x_1,x_2所界定的范围内 ξ位于xx0x1x2所界定的范围内 R ( x ) = 1 4 ! f ( 4 ) ( ξ ) ( x − x 0 ) 2 ( x − x 1 ) 2 , ξ ∈ ( x 0 , x 1 ) R(x)=\frac{1}{4!}f^{(4)}(\xi)(x-x_0)^2(x-x_1)^2,\xi \in (x_0,x_1) R(x)=4!1f(4)(ξ)(xx0)2(xx1)2ξ(x0x1)

上面不用看,考试中会用下面这种重节点差商即可
请添加图片描述

2.5 分段低次插值

高次插值会出现 Runge 现象,所以实际中一般采用分段低次插值。

分段线性插值不光滑,一般不常用。

2.6 三次样条插值

  1. 分段函数,2个点为一段,一共n段,n+1个点;
  2. 每段是三次多项式,即: a 0 + a 1 x + a 2 x 2 + a 3 x 3 a_0+a_1x+a_2x^2+a_3x^3 a0+a1x+a2x2+a3x3
  3. 拼接点上连续,一阶导连续,二阶导连续
  4. 满足插值条件 S ( x i ) = y i S(x_i)=y_i S(xi)=yi

  由第2点可知,构造三次样条插值至少需要4n个方程,而第3点可以提供3(n-1)个方程,第4点可以提供n+1个方程,共3(n-1)+n+1=4n-2个方程,一般会补充自然边界条件 S ′ ′ ( x 0 ) = S ′ ′ ( x n ) = 0 S''(x_0)=S''(x_n)=0 S′′(x0)=S′′(xn)=0,凑齐4n个方程。

  一般不考大题,可以考选择和填空,给你一个带有未知参数的三次样条多项式组,利用第3点【拼接点上连续,一阶导连续,二阶导连续】来确定参数。例如:求参数a,b,c
在这里插入图片描述

2.7 习题

2.7.1 判断题

  1. 对给定的数据作插值,插值函数个数可以任意多。
    【对,因为可以取不同的数据构造相同或不同次数的插值多项式】

  2. 如果给定点集的多项式插值是唯一的,则其多项式表达式也是唯一的。
    【错,牛顿插值和拉格朗日插值的表达式就不一样了】

  3. l i ( x ) ( i = 0 , 1 , ⋅ ⋅ ⋅ , n ) l_i(x)(i=0,1,···, n) li(x)(i=01⋅⋅⋅n)是关于节点 x i ( i = 0 , 1 , ⋅ ⋅ ⋅ , n ) x_i (i=0,1,···, n) xi(i=01⋅⋅⋅n)的拉格朗日插值基函数,则对任何次数不大于n的多项式 P(x) 都有 ∑ i = 0 n l i ( x ) P ( x i ) = P ( x ) 。 \sum^n_{i=0}l_i(x)P(x_i)= P(x)。 i=0nli(x)P(xi)=P(x)【对,此时插值余项 R n ( x ) = 0 R_n(x)=0 Rn(x)=0

  4. 当f(x)为连续函数,节点 x i ( i = 0 , 1 , ⋅ ⋅ ⋅ , n ) x_i (i=0,1,···, n) xi(i=01⋅⋅⋅n)为等距节点,构造拉格朗日插值多项式 L n ( x ) L_n(x) Ln(x),则n越大, L n ( x ) L_n(x) Ln(x)越接近 f(x)。
    【错,高次插值会出现Runge现象,在端点两端会极大偏离f(x)】

  5. 同上题,若构造三次样条插值函数 S n ( x ) S_n(x) Sn(x),则n越大,得到的三次样条函数 S n ( x ) S_n(x) Sn(x)越接近 f(x)。
    【对,在这里插入图片描述
    当n越大,则 h → 0 , S ( x ) h→0,S(x) h0S(x)及其一阶导数和二阶导数皆收敛于 f ( x ) , f ′ ( x ) 和 f ′ ′ ( x ) f(x),f'(x)和f''(x) f(x)f(x)f′′(x)

  6. 高次拉格朗日插值是很常用的。
    【错,高次拉格朗日插值会出现Runge现象,不具有收敛性,不常用】

  7. 函数 f(x) 的牛顿插值多项式 P n ( x ) P_n(x) Pn(x),如果 f(x) 的各阶导数均存在,则当 x i x_i xi x 0 x_0 x0(i=1,2,···,n)时, P n ( x ) P_n(x) Pn(x)就是 f(x) 在 x 0 x_0 x0点的泰勒多项式。
    【对,这可由牛顿插值及差商的性质得出】

2.7.2 计算题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


请添加图片描述

请添加图片描述
在这里插入图片描述

请添加图片描述

请添加图片描述

请添加图片描述

第3章 函数逼近与快速傅里叶变换

【已知:n+1个互异的节点(xi,yi)】
【求解:Sn(x)≈ f(x)】
【方法:拟合法】

3.4 曲线拟合的最小二乘法

最小二乘法示例
1.线性化请添加图片描述
2.更新表格请添加图片描述
3.列出 φ j \varphi_j φj φ 0 = 1 , φ 1 = x ,一般的: φ j = x j \varphi_0=1,\varphi_1=x,一般的 :\varphi_j=x^j φ0=1φ1=x,一般的:φj=xj 如果没有经过线性化,也有其他情况: φ j = f ( x ) 如果没有经过线性化,也有其他情况:\varphi_j=f(x) 如果没有经过线性化,也有其他情况:φj=f(x)
4.计算 ( φ j , φ k ) 和 ( φ j , y ) (\varphi_j,\varphi_k)和(\varphi_j,y) (φj,φk)(φj,y) ( φ j , φ k ) = ( φ k , φ j ) = ∑ i = 0 n φ j ( x i ) φ k ( x i ) (\varphi_j,\varphi_k)=(\varphi_k,\varphi_j)=\sum^n_{i=0}\varphi_j(x_i)\varphi_k(x_i) (φj,φk)=(φk,φj)=i=0nφj(xi)φk(xi) ( φ j , y ) = ∑ i = 0 n φ j ( x i ) y i (\varphi_j,y)=\sum^n_{i=0}\varphi_j(x_i)y_i (φj,y)=i=0nφj(xi)yi
5.列出法方程组Ga=b请添加图片描述
6.求解法方程组 a = ( a 0 , a 1 , ⋅ ⋅ ⋅ , a n ) a=(a_0,a_1,···,a_n) a=(a0,a1,⋅⋅⋅,an)
7.系数回代如果有经历过线性化步骤,则把系数回代,求出原来的系数,例如:线性化步骤中使用了A=ln a,我们求出的是系数A,要回代求出a = eA
8.写出表达式S(x)根据求出的系数,写出表达式S(x)。

在这里插入图片描述
请添加图片描述

3.5 习题

3.5.1 判断题

  1. 当数据量很大时,用最小二乘拟合比用插值法好。【错,当一个函数由给定的一组可能不精确表示函数的数据来确定时,使用最小二乘的曲线拟合是最合适的。】

3.5.2 计算题

在这里插入图片描述


在这里插入图片描述


请添加图片描述
在这里插入图片描述

请添加图片描述

第4章 数值积分与数值微分

【已知:n+1个互异的节点(xi,yi)】
【求解: ∫ b a f ( x ) d x 的近似值 \int_b^a{f(x)}\mathrm{d}x 的近似值 baf(x)dx的近似值
【方法:牛顿-柯斯特公式、复合求积公式等等】

4.1 数值积分概论

4.1.2 代数精度

代数精度
定义若某个求积公式对所有不超过m次的多项式都精确成立,而对某一个m+1次多项式近似成立,则称该求积公式具有m次代数精度
判读代数精度的方法判断某个求积公式的值与 ∫ b a f ( x ) d x \int_b^a{f(x)}\mathrm{d}x baf(x)dx是否相等,其中f(x)= 1,x2,x3,···,xn,一直判断到不相等为止,如果xm次方相等,而xm+1不相等,则该求积公式具有m次代数精度
示例在这里插入图片描述

4.2 牛顿-柯特斯公式

n为奇数,则牛顿-柯特斯公式至少具有n次代数精度n为偶数,则牛顿-柯特斯公式至少具有n+1阶代数精度。】

求积公式余项
梯形公式(n=1) b − a 2 [ f ( x 0 ) + f ( x 1 ) ] \frac{b-a}{2}[f(x_0)+f(x_1)] 2ba[f(x0)+f(x1)] 其中 h = b − a , x k = a + k h ( k = 0 , 1 ) 其中h=b-a,x_k=a+kh(k=0,1) 其中h=baxk=a+kh(k=0,1) − b − a 12 f ′ ′ ( ξ ) ( b − a ) 2 -\frac{b-a}{12}f''(\xi)(b-a)^2 12baf′′(ξ)(ba)2
辛普森公式(n=2) b − a 6 [ f ( x 0 ) + 4 f ( x 1 ) + f ( x 2 ) ] \frac{b-a}{6}[f(x_0)+4f(x_1)+f(x_2)] 6ba[f(x0)+4f(x1)+f(x2)] 其中 h = b − a 2 , x k = a + k h ( k = 0 , 1 , 2 ) 其中h=\frac{b-a}{2},x_k=a+kh(k=0,1,2) 其中h=2baxk=a+kh(k=0,1,2) − b − a 180 f ( 4 ) ( ξ ) ( b − a 2 ) 4 -\frac{b-a}{180}f^{(4)}(\xi)(\frac{b-a}{2})^4 180baf(4)(ξ)(2ba)4
柯斯特公式(n=4) b − a 90 [ 7 f ( x 0 ) + 32 f ( x 1 ) + 12 f ( x 2 ) + 32 f ( x 3 ) + 7 f ( x 4 ) ] \frac{b-a}{90}[7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)] 90ba[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)] 其中 h = b − a 4 , x k = a + k h ( k = 0 , 1 , 2 , 3 , 4 ) 其中h=\frac{b-a}{4},x_k=a+kh(k=0,1,2,3,4) 其中h=4baxk=a+kh(k=0,1,2,3,4) − b − a 945 2 f ( 6 ) ( ξ ) ( b − a 4 ) 6 -\frac{b-a}{\frac{945}{2}}f^{(6)}(\xi)(\frac{b-a}{4})^6 2945baf(6)(ξ)(4ba)6

巧记求积公式:区间长度/份数 ×(每点函数值 × 对应份数)

  1. 梯形公式——分为2份,两点各占1份;
  2. 辛普森公式——分为6份,三点占1,4,1份;
  3. 柯斯特公式——分为90份,五点占7,32,12,32,7份

余项只要记梯形和辛普森即可,都是:区间长度/(12或180)× m+1阶导数 * h的m+1次方【m为对应代数精度】

4.3 复合求积公式

求积公式余项
复合梯形公式 T n = h 2 [ f ( a ) + f ( b ) + 2 ∑ k = 1 n − 1 f ( x k ) ] , h = b − a n T_n=\frac{h}{2}[f(a)+f(b)+2\sum^{n-1}_{k=1}f(x_k)],h=\frac{b-a}{n} Tn=2h[f(a)+f(b)+2k=1n1f(xk)]h=nba − b − a 12 f ′ ′ ( ξ ) h 2 -\frac{b-a}{12}f''(\xi)h^2 12baf′′(ξ)h2
复合辛普森公式 S n = h 6 [ f ( a ) + f ( b ) + 2 ∑ k = 1 n − 1 f ( x k ) + 4 ∑ k = 0 n − 1 f ( x k + 1 2 ) ] , h = b − a n S_n=\frac{h}{6}[f(a)+f(b)+2\sum^{n-1}_{k=1}f(x_k)+4\sum^{n-1}_{k=0}f(x_{k+\frac{1}{2}})],h=\frac{b-a}{n} Sn=6h[f(a)+f(b)+2k=1n1f(xk)+4k=0n1f(xk+21)]h=nba − b − a 180 f ( 4 ) ( ξ ) ( h 2 ) 4 -\frac{b-a}{180}f^{(4)}(\xi)(\frac{h}{2})^4 180baf(4)(ξ)(2h)4

4.4 龙贝格求积公式

可以将 T n 加速为 S n ,再加速为 C n ,再加速为 R n 可以将T_n加速为S_n,再加速为C_n,再加速为R_n 可以将Tn加速为Sn,再加速为Cn,再加速为Rn
梯形公式 → 辛普森公式 → 柯斯特公式 → 龙贝格公式 梯形公式 →辛普森公式→柯斯特公式→龙贝格公式 梯形公式辛普森公式柯斯特公式龙贝格公式

4.6 高斯求积公式

  1. 节点是不等距的
  2. 代数精度是2n+1
  3. 系数全部为正数
  4. 是稳定的算法

4.6.2 高斯-勒让德求积公式(应该不考)

高斯-勒让德求积公式
区间归一化 令 x = b − a 2 t + a + b 2 ,可以把区间 [ a , b ] 化为 [ − 1 , 1 ] ,此时 令x=\frac{b-a}{2}t+\frac{a+b}{2},可以把区间[a,b]化为[-1,1],此时 x=2bat+2a+b,可以把区间[ab]化为[11],此时 ∫ a b f ( x ) d x = b − a 2 ∫ − 1 1 f ( b − a 2 t + a + b 2 ) d t \int^b_af(x)\mathrm d{x}=\frac{b-a}{2}\int^1_{-1}f(\frac{b-a}{2}t+\frac{a+b}{2})\mathrm d{t} abf(x)dx=2ba11f(2bat+2a+b)dt
查表计算 ∫ − 1 1 f ( x ) d x = ∑ k = 0 n A k f ( x k ) \int^1_{-1}f(x)\mathrm d{x} =\sum_{k=0}^n A_kf(x_k) 11f(x)dx=k=0nAkf(xk)
n x k x_k xk A k A_k Ak
002
1 ± 1 3 ±\frac{1}{\sqrt{3}} ±3 11

4.7 习题

4.7.1 判断题

  1. 数值求积公式计算总是稳定的.【错,当n≥8时,牛顿-科斯特公式的求积系数出现负值,是不稳定的】
  2. 代数精确度是衡量算法稳定性的一个重要指标.【错,代数精度是衡量求积公式精度的一个指标
  3. n+1个点的插值型求积公式的代数精确度至少是n 次,最多可达到2n+1次.【对】
  4. 高斯求积公式只能计算区间[一1,1]上的积分.【错,可以做区间变化来求其他区间】
  5. 求积公式的阶数与所依据的插值多项式的次数一样.【错,当n为偶数,牛顿-科斯特公式的代数精度至少为n+1】
  6. 梯形公式与两点高斯公式精度一样.【错,梯形公式代数精度为1,两点高斯公式精度为3】
  7. 高斯求积公式系数都是正数,故计算总是稳定的.【对】
  8. 由于龙贝格求积节点与牛顿一柯特斯求积节点相同,因此它们的精度相同.【错,龙贝格求积公式对被积函数的连续性要求比较高。当被积函数的连续性不太高时,用复合牛顿一柯特斯求积公式求得的积分值的精度可能会比用龙贝格求积公式求得的积分值的精度高些
  9. 阶数不同的高斯求积公式没有公共节点.【错,可能会具有公共节点】

4.7.2 计算题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

在这里插入图片描述


请添加图片描述

请添加图片描述

请添加图片描述

第5章 解线性方程组的直接方法

5.2 高斯消去法

5.2.1 高斯消去法

  如果 a i i ( i ) ≠ 0 a_{ii}^{(i)}≠0 aii(i)=0,对Ax=b,可以通过高斯消元法,化为上三角形式。
a i i ( i ) ≠ 0 的充要条件是 A 的顺序主子式 D i ≠ 0 ,其中 i = 1 , 2 , ⋅ ⋅ ⋅ , n a_{ii}^{(i)}≠0的充要条件是A的顺序主子式D_i≠0,其中i=1,2,···,n aii(i)=0的充要条件是A的顺序主子式Di=0,其中i=1,2,⋅⋅⋅,n

5.2.2 矩阵的三角分解

  设A为n阶矩阵,如果A的顺序主子式 D i ≠ 0 D_i≠0 Di=0,则A可以分解为一个单位下三角矩阵L和一个上三角矩阵U的乘积,且分解是唯一的。

证明:如果A为非奇异矩阵,假设分解不唯一,则至少有两个分解,设其为 L 1 U 1 和 L 2 U 2 L_1U_1和L_2U_2 L1U1L2U2,其中 L 1 , L 2 L_1,L_2 L1,L2是单位下三角矩阵, U 1 , U 2 U_1,U_2 U1,U2是上三角矩阵,则 A = L 1 U 1 = L 2 U 2 A=L_1U_1=L_2U_2 A=L1U1=L2U2,因为L和U可逆,所以 L 2 − 1 L 1 = U 2 U 1 − 1 L_2^{-1}L_1=U_2U_1^{-1} L21L1=U2U11,因为左边是一个下三角矩阵,而右边是一个上三角矩阵,要是二者相等,只能是左右两边为单位矩阵E,则 L 1 = L 2 , U 1 = U 2 , L_1=L_2,U_1=U_2, L1=L2U1=U2矛盾,所以分解是唯一的。

请添加图片描述

5.2.3 列主元消去法

高斯消元法每进行消元前,选择当前列中绝对值最大的元素做为主元素,然后在进行消元。

5.3 矩阵三角分解法

步骤示例
直接三角分解法 ①将 A 分解为 L U ①将A分解为LU A分解为LU ②求解 L y = b ,解得 y ②求解Ly=b,解得y 求解Ly=b,解得y ③求解 U x = y ,解得 x ③求解Ux=y,解得x 求解Ux=y,解得x请添加图片描述
平方根法【A为对称正定矩阵】 ①将 A 分解为 L L T ①将A分解为LL^T A分解为LLT ②求解 L y = b ,解得 y ②求解Ly=b,解得y 求解Ly=b,解得y ③求解 L T x = y ,解得 x ③求解L^Tx=y,解得x 求解LTx=y,解得x请添加图片描述
追赶法【A为三对角矩阵】 ①将 A 分解为 L U ①将A分解为LU A分解为LU ②求解 L y = b ,解得 y ②求解Ly=b,解得y 求解Ly=b,解得y ③求解 U x = y ,解得 x ③求解Ux=y,解得x 求解Ux=y,解得x请添加图片描述
补充示例
A=LU请添加图片描述
A = L L T A=LL^T A=LLT请添加图片描述
A=LU请添加图片描述

5.4 向量和矩阵范数

谱半径 ρ ( A ) = max ⁡ 1 ≤ i ≤ n ∣ λ i ∣ 【谱半径 = 矩阵 A 最大的特征值的绝对值】 谱半径 \rho(A)=\max_{1≤i≤n} |\lambda_i| 【谱半径=矩阵A最大的特征值的绝对值】 谱半径ρ(A)=1inmaxλi【谱半径=矩阵A最大的特征值的绝对值】

范数向量范数 x矩阵范数 A
定义 ①【正定】 ∣ ∣ x ∣ ∣ ≥ 0 (    ∣ ∣ x ∣ ∣ = 0 当且仅当 x = 0 ) ①【正定】 ||x|| ≥ 0 \quad (\; ||x||=0当且仅当x=0) 【正定】∣∣x∣∣0(∣∣x∣∣=0当且仅当x=0) ②【其次】 ∣ ∣ α x ∣ ∣ = ∣ α ∣    ∣ ∣ x ∣ ∣ , α 为任意常数 ②【其次】 ||αx|| = |α|\;||x||,α为任意常数 【其次】∣∣αx∣∣=α∣∣x∣∣α为任意常数 ③【三角不等式】 ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ③【三角不等式】 ||x+y|| ≤ ||x|| + ||y|| 【三角不等式】∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣ ①【正定】 ∣ ∣ A ∣ ∣ ≥ 0 (    ∣ ∣ A ∣ ∣ = 0 当且仅当 x = 0 ) ①【正定】 ||A|| ≥ 0 \quad (\; ||A||=0当且仅当x=0) 【正定】∣∣A∣∣0(∣∣A∣∣=0当且仅当x=0) ②【其次】 ∣ ∣ α A ∣ ∣ = ∣ α ∣    ∣ ∣ A ∣ ∣ , α 为任意常数 ②【其次】 ||αA|| = |α|\;||A||,α为任意常数 【其次】∣∣αA∣∣=α∣∣A∣∣α为任意常数 ③【三角不等式】 ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ ③【三角不等式】 ||A+B|| ≤ ||A|| + ||B|| 【三角不等式】∣∣A+B∣∣∣∣A∣∣+∣∣B∣∣ ④【相容性】 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣    ∣ ∣ B ∣ ∣ ④【相容性】 ||AB|| ≤ ||A|| \; ||B|| 【相容性】∣∣AB∣∣∣∣A∣∣∣∣B∣∣
常用范数 ∞ − 范数(最大范数): ∣ ∣ x ∣ ∣ ∞ = m a x    ∣ x i ∣ \infty-范数(最大范数): ||x|| _{\infty}=max\;|x_i| 范数(最大范数):∣∣x=maxxi 1 − 范数: ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ 1-范数: ||x|| _1=\sum_{i=1}^{n}|x_i| 1范数:∣∣x1=i=1nxi 2 − 范数: ∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n x i 2 = ( x , x ) 2-范数: ||x|| _2=\sqrt{\sum_{i=1}^{n}x_i^2}=\sqrt{(x,x)} 2范数:∣∣x2=i=1nxi2 =(x,x) p − 范数: ∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p p-范数: ||x|| _p={(\sum_{i=1}^{n}|x_i|^p)^{1/p}} p范数:∣∣xp=(i=1nxip)1/p ∞ − 范数(行范数): ∣ ∣ A ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n    ∑ j = 1 n ∣ a i j ∣ \infty-范数(行范数): ||A|| _{\infty}=\max_{1≤i≤n}\;\sum^n_{j=1}|a_{ij}| 范数(行范数):∣∣A=1inmaxj=1naij 1 − 范数(列范数): ∣ ∣ A ∣ ∣ 1 = max ⁡ 1 ≤ j ≤ n ∑ i = 1 n ∣ a i j ∣ 1-范数(列范数): ||A|| _1=\max_{1≤j≤n}\sum_{i=1}^{n}|a_{ij}| 1范数(列范数):∣∣A1=1jnmaxi=1naij 2 − 范数: ∣ ∣ A ∣ ∣ 2 = λ m a x ( A T A ) 2-范数: ||A|| _2=\sqrt{\lambda_{max}(A^TA)} 2范数:∣∣A2=λmax(ATA) 谱半径小于任意矩阵范数    ρ ( A ) ≤ ∣ ∣ A ∣ ∣ 谱半径小于任意矩阵范数\; \rho(A)≤||A|| 谱半径小于任意矩阵范数ρ(A)∣∣A∣∣
示例请添加图片描述请添加图片描述

巧记:列向量是特殊的矩阵

  1. ∞ − 范数 \infty-范数 范数——每行和的最大值, ∞ 符号是横的,所以计算行的和,然后取最大 \infty 符号是横的,所以计算行的和,然后取最大 符号是横的,所以计算行的和,然后取最大
  2. 1 − 范数 1-范数 1范数——每列和的最大值, 1 符号是竖的,所以计算列的和,然后取最大 1符号是竖的,所以计算列的和,然后取最大 1符号是竖的,所以计算列的和,然后取最大
  3. 2 − 范数 2-范数 2范数——向量是内积和开根号,矩阵是ATA的最大特征值开根号

5.5 误差分析

  如果矩阵A或者常数项b的微小变化,引起线性方程组Ax=b解的巨大变化,则称此线性方程组为病态方程组,矩阵A为病态矩阵,反之,则为良态

条件数 cond(A)
定义A为非奇异矩阵,则A的条件数cond(A)=|| A-1 || || A ||
常用条件数 c o n d ( A ) ∞ = ∣ ∣ A − 1 ∣ ∣ ∞    ∣ ∣ A ∣ ∣ ∞ cond(A)_{\infty}=|| A^{-1} ||_{\infty} \;|| A ||_{\infty} cond(A)=∣∣A1∣∣A 谱条件数: c o n d ( A ) 2 = ∣ ∣ A − 1 ∣ ∣ 2    ∣ ∣ A ∣ ∣ 2 = λ m a x ( A T A ) λ m i n ( A T A ) , 谱条件数:cond(A)_{2}=|| A^{-1} ||_{2} \;|| A ||_{2} = \sqrt{ \frac{ \lambda_{max}(A^TA) } { \lambda_{min} (A^TA) }}, 谱条件数:cond(A)2=∣∣A12∣∣A2=λmin(ATA)λmax(ATA) , 当 A 为对称矩阵时, c o n d ( A ) 2 = ∣ λ m a x ∣ ∣ λ m i n ∣ 当A为对称矩阵时,cond(A)_2=\frac{|\lambda_{max}|}{|\lambda_{min}|} A为对称矩阵时,cond(A)2=λminλmax
性质 条件数 ≥ 1 ——    c o n d ( A ) k = ∣ ∣ A − 1 ∣ ∣ k    ∣ ∣ A ∣ ∣ k ≥ ∣ ∣ A − 1 A ∣ ∣ k = 1 条件数≥1—— \; cond(A)_{k}=|| A^{-1} ||_{k} \;|| A ||_{k} ≥ ||A^{-1}A||_k=1 条件数1——cond(A)k=∣∣A1k∣∣Ak∣∣A1Ak=1 矩阵 A 进行放缩,条件数不变    ——    c o n d ( λ A ) = c o n d ( A ) 矩阵A进行放缩,条件数不变\;——\; cond(\lambda A)=cond(A) 矩阵A进行放缩,条件数不变——cond(λA)=cond(A) 正交矩阵 R 的谱条件数 = 1    ——    c o n d ( R ) 2 = 1 正交矩阵R的谱条件数=1 \; ——\; cond(R)_2=1 正交矩阵R的谱条件数=1——cond(R)2=1 A 为非奇异矩阵,则 c o n d ( R A ) 2 = c o n d ( A R ) 2 = c o n d ( A ) 2 A为非奇异矩阵,则cond(RA)_2=cond(AR)_2=cond(A)_2 A为非奇异矩阵,则cond(RA)2=cond(AR)2=cond(A)2

条件数相对较大时,矩阵是病态的,条件数越大,矩阵的病态程度越严重。

在这里插入图片描述

5.6 习题

5.6.1 判断题

  1. 只要矩阵A非奇异,则用顺序消去法或直接LU分解可求得线性方程组 Ax=b 的解.【错,因为即使矩阵A非奇异,在用顺序消去法或直接LU分解的过程中可能出现零元素或接近于零的元素做除数的情况,使计算进行不下去或使数据失真】
  2. 对称正定的线性方程组总是良态的.【错,对称正定只能保证特征值是正数,不能保证条件数比较小】
  3. 一个单位下三角矩阵的逆仍为单位下三角矩阵.【对】
  4. 如果A非奇异,则Ax=b的解的个数是由右端向量b决定的.【错,因为如果A非奇异,则线性方程组Ax=b的解是唯一的一个解,无论b如何取.】
  5. 如果三对角矩阵的主对角元素上有零元素,则矩阵必奇异.【错,因为矩阵奇异,只能说其某个特征值为零,但三对角矩阵的主对角元素上有零元素,三对角矩阵的特征值也不一定为0.
  6. 范数为零的矩阵一定是零矩阵.【对】
  7. 奇异矩阵的范数一定是零.【错,奇异矩阵不等于零矩阵】
  8. 如果矩阵对称,则 ∣ ∣ A ∣ ∣ 1 = ∣ ∣ A ∣ ∣ ∞ || A ||_1=|| A ||_{\infty} ∣∣A1=∣∣A【对】
  9. 如果线性方程组是良态的,则高斯消去法可以不选主元.【错,矩阵是良态,说明条件数小,而高斯消去法不选主元,要求顺序主子式不等于0,二者没有相关性】
  10. 在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小【错,矩阵病态是矩阵本身的性质,改变方法是无法解决的,只能改变矩阵本身才可能解决矩阵病态】
  11. ∣ ∣ A ∣ ∣ 1 = ∣ ∣ A T ∣ ∣ ∞ || A ||_1=|| A^T ||_{\infty} ∣∣A1=∣∣AT【对】
  12. 若A是n×n的非奇异矩阵,则 cond(A) = cond(A-1).【对】

5.6.2 计算题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


  10.用平方根法解线性方程组
[    4 − 2 2 − 2    2 − 3    2 − 3 6 ] [ x 1 x 2 x 3 ] = [ 4 − 3 5 ] \begin{bmatrix} \;4 & -2 & 2 \\ -2 & \;2 & -3 \\ \;2 & -3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 5 \end{bmatrix} 422223236 x1x2x3 = 435


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

第6章 解线性方程组的迭代法

6.2 雅可比迭代法与高斯-塞德尔迭代法

A x = b Ax=b Ax=b
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] = [ a 11 a 22 a 33 ] − [ 0 − a 21 0 − a 31 − a 32 0 ] − [ 0 − a 12 − a 13 0 − a 23 0 ] = D − L − U A= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}= \begin{bmatrix} a_{11} & & \\ & a_{22} & \\ & & a_{33} \end{bmatrix}- \begin{bmatrix} 0 & & \\ -a_{21} & 0 & \\ -a_{31} & -a_{32} & 0 \end{bmatrix}- \begin{bmatrix} 0 & -a_{12} & -a_{13} \\ & 0 & -a_{23} \\ & & 0 \end{bmatrix}=D-L-U A= a11a21a31a12a22a32a13a23a33 = a11a22a33 0a21a310a320 0a120a13a230 =DLU

迭代法雅可比高斯-塞德尔
计算公式 X ( k + 1 ) = B X ( k ) + f X^{(k+1)}=BX^{(k)}+f X(k+1)=BX(k)+f 其中 B = D − 1 ( L + U ) ,      f = D − 1 b 其中B=D^{-1}(L+U),\;\;f=D^{-1}b 其中B=D1(L+U)f=D1b X ( k + 1 ) = B X ( k ) + f X^{(k+1)}=BX^{(k)}+f X(k+1)=BX(k)+f 其中 B = ( D − L ) − 1 U ,      f = ( D − L ) − 1 b 其中B=(D-L)^{-1}U,\;\;f=(D-L)^{-1}b 其中B=(DL)1Uf=(DL)1b
迭代终止条件 ∣ X ∗ − X ( k ) ∣ < ε ,而准确值 X ∗ 一般不知道 |X^*-X^{(k)}|<ε,而准确值X^*一般不知道 XX(k)<ε,而准确值X一般不知道 所以一般使用 ∣ X ( k + 1 ) − X ( k ) ∣ < ε 所以一般使用 |X^{(k+1)}-X^{(k)}|<ε 所以一般使用X(k+1)X(k)<ε ∣ X ∗ − X ( k ) ∣ < ε ,而准确值 X ∗ 一般不知道 |X^*-X^{(k)}|<ε,而准确值X^*一般不知道 XX(k)<ε,而准确值X一般不知道 所以一般使用 ∣ X ( k + 1 ) − X ( k ) ∣ < ε 所以一般使用 |X^{(k+1)}-X^{(k)}|<ε 所以一般使用X(k+1)X(k)<ε
收敛条件【满足以下任意条件必收敛】 谱半径 ρ ( B ) < 1 谱半径\rho(B)<1 谱半径ρ(B)<1 存在范数 ∣ ∣ B ∣ ∣ < 1 存在范数||B||<1 存在范数∣∣B∣∣<1 A 为严格对角占优矩阵 A为严格对角占优矩阵 A为严格对角占优矩阵 A 为弱对角占优矩阵且 A 为不可约矩阵 A为弱对角占优矩阵且A为不可约矩阵 A为弱对角占优矩阵且A为不可约矩阵【满足以下任意条件必收敛】 谱半径 ρ ( B ) < 1 谱半径\rho(B)<1 谱半径ρ(B)<1 存在范数 ∣ ∣ B ∣ ∣ < 1 存在范数||B||<1 存在范数∣∣B∣∣<1 A 为严格对角占优矩阵 A为严格对角占优矩阵 A为严格对角占优矩阵 A 为弱对角占优矩阵且 A 为不可约矩阵 A为弱对角占优矩阵且A为不可约矩阵 A为弱对角占优矩阵且A为不可约矩阵 A 为对称正定矩阵 A为对称正定矩阵 A为对称正定矩阵
示例请添加图片描述请添加图片描述

补充

  将A分裂为D-L-U三个矩阵,其中D是主对角元素,L是除去主对角的下三角元素的相反数,U是除去主对角的上三角元素的相反数。

  迭代系数矩阵 B = M − 1 N B=M^{-1}N B=M1N【雅可比的M取D,N取L+U;高斯-塞德尔的M取D-L,N取U;】【雅可比是1,2的形式,高斯-塞德尔是2,1的形式】

  收敛条件注意主体是谁,前面两个条件主体是迭代系数矩阵B,后面条件主体是线性方程组系数矩阵A。高斯-塞德尔多一个矩阵A为对称正定必收敛的条件。

6.3 超松弛迭代法

  收敛条件0<ω<2【必要条件】

在这里插入图片描述

6.4 习题

6.4.1 判断题

  1. 雅可比迭代与高斯—塞德尔迭代同时收敛且后者比前者收敛快.【错,这两者之间并没有关系,收敛速度不能一概而论】
  2. 高斯一塞德尔迭代是SOR迭代的特殊情形.【对,ω=1的SOR迭代就是高斯-塞德尔迭代】
  3. A为严格对角占优或不可约对角占优,则解线性方程组Ax=b的雅可比迭代与高斯–塞德尔迭代均收敛.【对】
  4. A 对称正定则雅可比迭代与高斯一塞德尔迭代都收敛.【错,只有高斯-塞德尔收敛,雅可比不一定】
  5. SOR迭代法收敛,则松弛参数0<ω<2.【对】

6.4.2 计算题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


请添加图片描述

请添加图片描述

请添加图片描述


请添加图片描述

请添加图片描述


请添加图片描述


请添加图片描述


请添加图片描述


请添加图片描述

第7章 非线性方程与方程组的数值解法

7.1 方程求根与二分法

二分法
做法在这里插入图片描述
终止条件 ∣ x ∗ − x n ∣ ≤ b − a 2 n + 1 ≤ ε |x^*-x_n|≤\frac{b-a}{2^{n+1}}≤ ε xxn2n+1baε
收敛性必定收敛,但是收敛速度慢
示例请添加图片描述

7.2&7.4 不动点迭代法和牛顿法

迭代法牛顿法【切线法】
计算公式 x = φ ( x ) x=φ(x) x=φ(x) x k + 1 = x k − f ( x k ) f ′ ( x k ) x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)} xk+1=xkf(xk)f(xk)
终止条件 ∣ x ∗ − x k ∣ < ε ,而准确值 x ∗ 一般不知道 |x^*-x_{k}|<ε,而准确值x^*一般不知道 xxk<ε,而准确值x一般不知道 所以一般使用 ∣ x k + 1 − x k ∣ < ε 所以一般使用 |x_{k+1}-x_{k}|<ε 所以一般使用xk+1xk<ε同左
收敛条件【全局收敛】 φ ( x ) 满足以下两个条件 : φ(x)满足以下两个条件: φ(x)满足以下两个条件: ① ∀ x ∈ [ a , b ] , φ ( x ) ∈ [ a , b ] ①\forall x \in [a,b],φ(x) \in [a,b] ①∀x[a,b]φ(x)[a,b] ② ∀ x ∈ [ a , b ] , ∣ φ ′ ( x ) ∣ ≤ L < 1 ②\forall x \in [a,b],|φ'(x)|≤L<1 ②∀x[a,b]φ(x)L<1同左
示例请添加图片描述请添加图片描述
局部收敛收敛阶
定义`````` x k + 1 = φ ( x k ) 收敛,当 k → ∞ 时,满足 x_{k+1}=φ(x_k)收敛,当k→\infty 时,满足 xk+1=φ(xk)收敛,当k时,满足 x k + 1 − x ∗ ( x k − x ∗ ) p → C , C ≠ 0 , \frac{x_{k+1}-x^*}{(x_k-x^*)^p}→C,C≠0, (xkx)pxk+1xCC=0 则该迭代过程是 p 阶收敛的, p = 1 是线性收敛, 则该迭代过程是p阶收敛的,p=1是线性收敛, 则该迭代过程是p阶收敛的,p=1是线性收敛, p > 1 是超线性收敛, p = 2 是平方收敛 p>1是超线性收敛,p=2是平方收敛 p>1是超线性收敛,p=2是平方收敛
定理 ∣ φ ′ ( x ∗ ) ∣ < 1 , x ∗ 为准确值 |φ'(x^*)|<1,x^*为准确值 φ(x)<1x为准确值 一般使用初始值 x 0 代替 x ∗ 进行估计 一般使用初始值x_0代替x^*进行估计 一般使用初始值x0代替x进行估计 φ ′ ( x ∗ ) = φ ′ ′ ( x ∗ ) = ⋅ ⋅ ⋅ = φ ( p − 1 ) ( x ∗ ) = 0 , φ'(x^*)=φ''(x^*)=···=φ^{(p-1)}(x^*)=0, φ(x)=φ′′(x)=⋅⋅⋅=φ(p1)(x)=0, φ ( p ) ( x ∗ ) ≠ 0 ,则该迭代过程是 p 阶收敛的 φ^{(p)}(x^*)≠0,则该迭代过程是p阶收敛的 φ(p)(x)=0,则该迭代过程是p阶收敛的
示例在这里插入图片描述在这里插入图片描述在这里插入图片描述请添加图片描述

补充
   ∣ φ ′ ( x ) ∣ < 1 |φ'(x)|<1 φ(x)<1不一定收敛,收敛还与初值的选取有关;但 ∣ φ ′ ( x ) ∣ ≥ 1 |φ'(x)|≥1 φ(x)1一定发散。

  对于收敛阶,牛顿法求单根是平方收敛,求重根是线性收敛

7.5 习题

7.5.1 判断题

  1. 非线性方程(或方程组)的解通常不唯一【对,n次多项式最多有n个根】
  2. 牛顿法是不动点迭代的一个特例.【对,牛顿法实质上是 φ ( x ) = x − f ( x ) f ′ ( x ) φ(x)=x-\frac{f(x)}{f'(x)} φ(x)=xf(x)f(x)的不动点迭代】
  3. 不动点迭代法总是线性收敛的.【错,其特例牛顿法可以平方收敛】
  4. 任何迭代法的收敛阶都不可能高于牛顿法.【错,理论上可以构造3、4阶收敛的方法】
  5. 二分法与牛顿法一样都可推广到多维方程组求解.【错,二分法只能用于非线性方程,因为它的理论依据是一元连续函数的介值定理,而对多元连续函数没有与其对应的推广定理。】
  6. 牛顿法有可能不收敛.【对,牛顿法的收敛还与初值选取有关】
  7. 不动点迭代法 x k + 1 = φ ( x k ) x_{k+1}=φ(x_k) xk+1=φ(xk),其中 x ∗ = φ ( x ∗ ) x^*=φ(x^*) x=φ(x),若 ∣ φ ′ ( x ∗ ) ∣ < 1 |φ'(x^*)|<1 φ(x)<1,则对任意初值 x0 迭代都收敛.【错, ∣ φ ′ ( x ∗ ) ∣ < 1 |φ'(x^*)|<1 φ(x)<1只能保证局部收敛,而局部收敛一般对初值的选取有要求】

7.5.2 计算题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

第9章 常微分方程初值问题数值解法

【已知:切线方程 f ( x , y ) f(x,y) f(x,y)
【求解:函数值 y 1 , y 2 , ⋅ ⋅ ⋅ , y n y_1,y_2,···,y_n y1,y2,⋅⋅⋅,yn
【方法:欧拉法,梯形公式等等】

9.2 简单的数值方法

9.2.1&9.2.2 欧拉法、后退欧拉法和梯形方法

欧拉法后退欧拉法梯形方法
公式 y n + 1 = y n + h f ( x n , y n ) y_{n+1}=y_n+hf(x_n,y_n) yn+1=yn+hf(xn,yn) y n + 1 = y n + h f ( x n + 1 , y n + 1 ) y_{n+1}=y_n+hf(x_{n+1},y_{n+1}) yn+1=yn+hf(xn+1,yn+1) y n + 1 = y n + h 2 [ f ( x n , y n ) + f ( x n + 1 , y n + 1 ) ] y_{n+1}=y_n+\frac{h}{2}[f(x_n,y_n)+f(x_{n+1},y_{n+1})] yn+1=yn+2h[f(xn,yn)+f(xn+1,yn+1)]
类型显式隐式隐式
截断误差 h 2 2 y ′ ′ ( x n ) + O ( h 3 ) \frac{h^2}{2}y''(x_n)+O(h^3) 2h2y′′(xn)+O(h3) − h 2 2 y ′ ′ ( x n ) + O ( h 3 ) -\frac{h^2}{2}y''(x_n)+O(h^3) 2h2y′′(xn)+O(h3) − h 3 12 y ′ ′ ′ ( x n ) + O ( h 4 ) -\frac{h^3}{12}y'''(x_n)+O(h^4) 12h3y′′′(xn)+O(h4)
1阶1阶2阶
步骤依次计算 y 1 , y 2 , ⋅ ⋅ ⋅ , y n y_1,y_2,···,y_n y1,y2,⋅⋅⋅,yn先用欧拉算一个初值 y n + 1 ( 0 ) y_{n+1}^{(0)} yn+1(0),然后用后退欧拉迭代计算 y n + 1 ( 1 ) , y n + 1 ( 2 ) , ⋅ ⋅ ⋅ , , y n + 1 ( k ) y_{n+1}^{(1)},y_{n+1}^{(2)},···,,y_{n+1}^{(k)} yn+1(1)yn+1(2)⋅⋅⋅,yn+1(k)。按照上面步骤依次得到 y 1 , y 2 , ⋅ ⋅ ⋅ , y n y_1,y_2,···,y_n y1,y2,⋅⋅⋅,yn同后退欧拉公式,只是迭代公式使用梯形公式

补充

  1. 后退欧拉与梯形公式如果考试中计算,k取1即可,相当于只迭代一次,即:欧拉,后退欧拉(梯形),欧拉,后退欧拉(梯形),···间隔使用

9.2.3 改进欧拉公式

改进的欧拉公式
公式 { y p = y n + h f ( x n , y n ) y c = y n + h f ( x n + 1 , y p ) y n + 1 = 1 2 ( y p + y c ) \begin{cases}y_p=y_n+hf(x_n,y_n) \\ y_c=y_n+hf(x_{n+1},y_p) \\ y_{n+1}=\frac{1}{2}(y_p+y_c) \end{cases} yp=yn+hf(xn,yn)yc=yn+hf(xn+1,yp)yn+1=21(yp+yc)
类型显式?隐式?
截断误差 O ( h 3 ) O(h^3) O(h3)
2阶
步骤先用欧拉公式计算 y p y_p yp,然后基于 y p y_p yp使用后退欧拉公式计算 y c y_c yc,最后取二者平均值当作 y n + 1 y_{n+1} yn+1

9.2.4 局部阶段误差与阶

局部截断误差
T n + 1 = y ( x n + 1 ) − y n + 1 = y ( x n + 1 ) − y ( x n ) − h φ ( x n , y n , y n + 1 , h ) T_{n+1}=y(x_{n+1})-y_{n+1}=y(x_{n+1})-y(x_n)-hφ(x_n,y_n,y_{n+1},h) Tn+1=y(xn+1)yn+1=y(xn+1)y(xn)hφ(xn,yn,yn+1,h) 其中 y ( x ) 为准确解, y n + 1 为公式求出的近似解 其中y(x)为准确解,y_{n+1}为公式求出的近似解 其中y(x)为准确解,yn+1为公式求出的近似解 φ ( x n , y n , y n + 1 , h ) 为增量函数,就是已知的切线方程 φ(x_n,y_n,y_{n+1},h)为增量函数,就是已知的切线方程 φ(xn,yn,yn+1,h)为增量函数,就是已知的切线方程 将 T n + 1 = y ( x n + 1 ) − y ( x n ) − h φ ( x n , y n , y n + 1 , h ) 中 将T_{n+1} =y(x_{n+1})-y(x_n)-hφ(x_n,y_n,y_{n+1},h)中 Tn+1=y(xn+1)y(xn)hφ(xn,yn,yn+1,h) y n + 1 和 φ ( x n , y n , y n + 1 , h ) 泰勒展开 y_{n+1}和φ(x_n,y_n,y_{n+1},h)泰勒展开 yn+1φ(xn,yn,yn+1,h)泰勒展开 得到 : T n + 1 = Φ ( x n , y ( x n ) ) h p + 1 + O ( h p + 2 ) 得到:T_{n+1} =Φ(x_n,y(x_n))h^{p+1}+O(h^{p+2}) 得到:Tn+1=Φ(xn,y(xn))hp+1+O(hp+2) 则称此方法有 P 阶精度, 则称此方法有P阶精度, 则称此方法有P阶精度, 其中 Φ ( x n , y ( x n ) ) h p + 1 称为局部截断误差主项 其中Φ(x_n,y(x_n))h^{p+1}称为局部截断误差主项 其中Φ(xn,y(xn))hp+1称为局部截断误差主项

补充:
  对 φ ( x n , y n , y n + 1 , h ) φ(x_n,y_n,y_{n+1},h) φ(xn,yn,yn+1,h)泰勒展开:(1) φ ( x n , y n , y n + 1 , h ) = f ( x n , y n ) φ(x_n,y_n,y_{n+1},h)=f(x_n,y_n) φ(xn,yn,yn+1,h)=f(xn,yn),则其泰勒展开等于 y ′ ( x n ) y'(x_n) y(xn);(2) φ ( x n , y n , y n + 1 , h ) = f ( x n + 1 , y n + 1 ) φ(x_n,y_n,y_{n+1},h)=f(x_{n+1},y_{n+1}) φ(xn,yn,yn+1,h)=f(xn+1,yn+1),则其泰勒展开等于 y ′ ( x n + 1 ) y'(x_{n+1}) y(xn+1),等于 y ( x n + 1 ) y(x_{n+1}) y(xn+1)的泰勒展开式中将 y ( x n ) y(x_{n}) y(xn)替换为 y ′ ( x n ) y'(x_{n}) y(xn);(3)如果是(1)(2)的结合,则按照规则各自展开即可

9.3 龙格-库塔方法

改进的欧拉是二阶龙格-库塔法,二阶龙格-库塔法不止改进的欧拉这一种。

9.4 收敛性和稳定性

p≥1时单步法收敛,即1阶精度及以上的方法都是收敛的

改进欧拉的稳定域比欧拉大,稳定域越大越稳定。

9.5 线性多步法

线性多步法
定义 计算 y n + k 时不仅用到 y n + k − 1 ,还用到 y n + i ( i = 0 , 1 , ⋅ ⋅ ⋅ , k − 2 ) 计算y_{n+k}时不仅用到y_{n+k-1},还用到y_{n+i}(i=0,1,···,k-2) 计算yn+k时不仅用到yn+k1,还用到yn+i(i=0,1,⋅⋅⋅,k2)
泰勒展开 y ( x n + i h ) = y ( x n ) + i h y ′ ( x n ) + ( i h ) 2 2 ! y ′ ′ ( x n ) + ( i h ) 3 3 ! y ′ ′ ′ ( x n ) + ⋅ ⋅ ⋅ y(x_n+ih)=y(x_n)+ihy'(x_n)+\frac{(ih)^2}{2!}y''(x_n)+\frac{(ih)^3}{3!}y'''(x_n)+··· y(xn+ih)=y(xn)+ihy(xn)+2!(ih)2y′′(xn)+3!(ih)3y′′′(xn)+⋅⋅⋅ y ′ ( x n + i h ) = y ′ ( x n ) + i h y ′ ′ ( x n ) + ( i h ) 2 2 ! y ′ ′ ′ ( x n ) + ( i h ) 3 3 ! y ( 4 ) ( x n ) + ⋅ ⋅ ⋅ y'(x_n+ih)=y'(x_n)+ihy''(x_n)+\frac{(ih)^2}{2!}y'''(x_n)+\frac{(ih)^3}{3!}y^{(4)}(x_n)+··· y(xn+ih)=y(xn)+ihy′′(xn)+2!(ih)2y′′′(xn)+3!(ih)3y(4)(xn)+⋅⋅⋅

9.6 习题

9.6.1 判断题

  1. 数值求解常微分方程初值问题截断误差与舍入误差互不相关.【对,截断误差是说通过精确计算所得的值 y n y_n yn与所求问题的精确解 y ( x n ) y(x_n) y(xn)的差 e n = y ( x n ) − y n e_n=y(x_n)-y_n en=y(xn)yn,在此期间没有涉及近似计算,因此与舍入误差无关
  2. 一个数值方法局部截断误差的阶等于整体误差的阶(即方法的阶).【错,局部比整体高一阶
  3. 算法的阶越高计算结果就越精确.【错,高阶导数存在时,才是越高越好,反之则不然
  4. 显式方法的优点是计算简单且稳定性好.【错,显式稳定性比较差】
  5. 隐式方法的优点是稳定性好且收敛阶高.【对】
  6. 单步法比多步法优越的原因是计算简单且可以自启动.【错,单步法中隐式计算并不简单
  7. 改进欧拉法是二阶的龙格—库塔方法.【对】

9.6.2 计算题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值