自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

无知人生,记录点滴

纸上得来终觉浅,绝知此事要躬行。

原创 基于空间域的图卷积GCNs(ConvGNNs)

文章目录Spatial-based ConvGNNs 基于空间的卷积Neural Network for Graphs (NN4G)Contextual Graph Markov Model (CGMM)Diffusion Convolutional Neural Network (DCNN)扩散...

2019-11-20 21:38:40 2479 4

原创 图卷积网络 GCN Graph Convolutional Network(谱域GCN)的理解和详细推导-持续更新

文章目录1. 为什么会出现图卷积神经网络?2. 图卷积网络的两种类型2.1 vertex domain(spatial domain):顶点域(空间域)2.2 spectral domain:频域方法(谱方法)3. 什么是拉普拉斯矩阵?3.1 常用的几种拉普拉斯矩阵普通形式的拉普拉斯矩阵对称归一化...

2019-08-24 22:39:58 31488 113

原创 GCN - Semi-Supervised Classification with Graph Convolutional Networks 用图卷积进行半监督节点分类 ICLR 2017

文章目录Abstract1.Intruduction2.Fast Approximate Convolutions on Graphs(图的快速近似卷积)2.1 SpectralGraph Convolutins(谱图卷积)补充证明2.2 Layer-wise Linear Model(逐层线性模...

2019-08-07 09:13:33 6056 2

原创 HAN - Heterogeneous Graph Attention Network 异构图注意力网络 WWW 2019

文章目录1 相关介绍背景元路径 meta-path异构图和同构图相关工作Graph Neural NetworkNetwork Embedding贡献2 HAN模型2.1 Node-level Attention2.2 Semantic-level Attention2.3 模型分析3 实验3....

2020-01-02 15:02:40 1661 1

原创 Graph U-Nets [gPool gUnpool] 图分类 节点分类 图池化 ICML 2019

文章目录1 相关介绍背景贡献2 相关工作图卷积图池化3 Graph U-Nets3.1 Graph Pooling Layer:gPool3.2 Graph Unpooling Layer:gUnpool3.3 Graph U-Nets Architecture 图U-Nets架构3.4 Gra...

2019-12-02 09:02:34 2340 1

原创 SAGPool - Self-Attention Graph Pooling 图分类 图池化方法 ICML 2019

文章目录1 相关介绍背景创新性2 相关工作基于拓扑的池化全局池化分层池化3 方法3.1 基于self-attention的图池化方法:SAGPoolSelf-attention mask图池化SAGPool的变种3.2 模型架构卷积层readout层全局池化架构分层池化架构4 实验数据集GNNs的...

2019-11-30 18:28:31 2607 5

原创 [DIFFPOOL] - Hierarchical Graph Representation Learning with Differentiable Pooling 图分类 NeurIPS 2018

文章目录1 相关介绍相关概念背景介绍模型简介2 相关工作3 DIFFPOOL:可微的pooling方法3.1 问题定义图神经网络堆叠GNNs和pooling层3.2 Differentiable Pooling via Learned AssignmentsPooling with an assi...

2019-11-29 11:34:17 1974 2

原创 PGE - A Representation Learning Framework for Property Graphs 属性图表示学习框架 KDD 2019

文章目录1 相关介绍1.1 背景1.2 现有方法的局限性1.3 contributions2 相关工作矩阵分解随机游走图神经网络中的邻接聚合3 PGE框架3.1 符号定义3.2 问题定义3.3 PGE三步骤步骤1:基于节点属性的聚类步骤2:基于邻居的采样步骤3:邻居聚合3.4 边的方向和属性的支持...

2019-11-26 21:37:29 665 1

原创 CensNet:Convolution with Edge-Node Switching in Graph Neural Networks 边和节点切换卷积的图神经网络 IJCAI 2019

文章目录1 相关介绍1.1 背景介绍1.2 结合节点和边特征的Embeddings方法1.3 Contributions2 符号定义3 交换节点和边的卷积3.1 传播规则节点层传播规则边层传播规则3.2 和任务相关的损失函数3.3 训练算法4 实验4.1 benchmark data setsTo...

2019-11-26 09:10:34 313 0

原创 图或网络中的中心性:点度中心性、中介中心性、接近中心性、特征向量中心性、PageRank

文章目录点度中心性(degree centrality)中介中心性(betweenness centrality)接近中心性(closeness centrality)特征向量中心性(eigenvector centrality)有向图与PageRank小结 网络由节点(node)和连接它们的边...

2019-11-17 14:25:39 6105 7

原创 GraphSAGE NIPS 2017 代码分析(Tensorflow版)

文章目录数据集ppi数据集信息toy-ppi-G.json 图的信息toy-ppi-class_map.jsontoy-ppi-id_map.jsontoy-ppi-walks.txttoy-ppi-feats.npy实验要求运行代码分析`__init__.py``utils.py``neigh_...

2019-11-08 09:09:08 3130 21

原创 How Powerful are Graph Neural Networks? GIN 图同构网络 ICLR 2019 论文详解

文章目录1 相关介绍Definition 1 :multiset数学上的单射(injective)2 GNN 怎么和 Weisfeiler-Lehman test 关联起来?2.1 符号定义2.2 Graph Neural Networks2.3 两类任务2.3 Weisfeiler-Lehman...

2019-10-31 17:04:07 3289 1

原创 RGCN - Modeling Relational Data with Graph Convolutional Networks 使用图卷积网络对关系数据进行建模 ESWC 2018

文章目录1 相关介绍两个任务main contributions2 Neural relational modeling2.1 符号定义2.2 关系图卷积网络R-GCN2.3 Regularization 规则化basis decomposition 基函数分解dblock-diagonal de...

2019-10-27 11:12:55 4052 4

原创 GCMC - Graph Convolutional Matrix Completion 图卷积矩阵补全 KDD 2018

文章目录1 相关介绍1.1 背景1.2 side information1.3 contributions1.4 相关介绍自编码器矩阵分解模型Matrix completion with side information2 在二部图中矩阵补全作为一种连接预测2.1 符号定义2.2 Revisiti...

2019-10-25 18:13:59 3658 0

原创 win10 Clion 免编译使用OpenBLAS线性代数库

近期需要移植项目,所以要在Windows上用BLAS。 网上有相关流程,但总体来看一是比较繁琐,二来有效性不高。本流程根据自身经验总结,希望能有所帮助。 Openblas github官网有介绍如何在Window上编译的方法(How to use OpenBLAS in Microsoft Vis...

2019-10-23 15:25:09 141 0

原创 Low-memory GEMM-based convolution algorithms for deep neural networks 深度神经网络中基于GEMM的低内存卷积算法

文章目录1 相关介绍DNN卷积的实现方法contributions2 DNN 卷积3 使用O(K2CHW)O(K^2CHW)O(K2CHW) 空间的patch matrix的卷积3.1 Matrix layouts3.2 Patch-minor layouts3.3 Patch-building ...

2019-10-20 22:18:24 233 1

原创 MEC:Memory-efficient Convolution for Deep Neural Network 深度神经网络中内存高效的卷积算法MEC 论文详解 ICML 2017

文章目录1 相关介绍2 Preliminaries标记相关工作3 MEC算法3.1 动机3.2 MEC 算法初级版本3.3 MEC 算法高级版本3.4 分析4 实验结果 论文:MEC: Memory-efficient Convolution for Deep Neural Network 深度...

2019-10-20 15:19:19 324 0

原创 SGC - Simplifying Graph Convolutional Networks 简化的图卷积网络 论文详解 ICML 2019

文章目录1 相关介绍1.1 Simple Graph Convolution (SGC)提出的背景1.2 SGC效果2 Simple Graph Convolution 简化的图卷积2.1 符号定义2.2 图卷积网络GCNGCN vs MLPFeature propagation 特征传播Feat...

2019-10-15 23:06:27 2312 1

原创 Parallel Multi Channel Convolution using General Matrix Multiplication 基于广义矩阵乘法的并行多通道卷积 ASAP 2017

文章目录1 相关介绍用到的一些定义背景contributions2 CNN多通道卷积是单通道卷积的和im2col3 新方法3.1 Kernel to Row(kn2row) and Kernel to Column (kn2col)4. 实验结果实验设置性能趋势相关工作 论文:Parallel ...

2019-10-14 22:43:57 196 1

原创 python复杂网络分析库networkx

文章目录1 简介安装支持四种图绘制网络图基本流程2 Graph-无向图节点边属性有向图和无向图互转3 DiGraph-有向图一些精美的图例子绘制一个DNN结构图一些图论算法最短路径问题一些其他神经网络绘制工具列表参考 1 简介 networkx是一个用Python语言开发的图论与复杂网络建模...

2019-10-13 23:00:43 2327 2

原创 Adaptive Sampling Towards Fast Graph Representation Learning 基于适应性采样的快速图表示学习 论文详解 NIPS 2018

文章目录 论文题目:Adaptive Sampling Towards Fast Graph Representation Learning 作者:来自Tencent AI Lab的Wenbing Huang, Tong Zhang, Yu Rong, Junzhou Huang 时间:20...

2019-10-10 23:36:13 775 0

原创 [EGNN] Exploiting Edge Features for Graph Neural Networks 基于边缘特征的图神经网络 论文详解 CVPR 2019

文章目录1 简介1.1 GAT和GCN的局限性1.2 EGNN的创新点2 相关工作3 EGNN网络3.1 符号定义3.2 EGNN和GNN的对比3.3 Doubly stochastic normalization of edges 边的双随机归一化3.4 EGNN(A): Attention b...

2019-10-09 22:06:33 1260 1

原创 GeniePath:Graph Neural Networks with Adaptive Receptive Paths 论文详解 KDD 2018

文章目录1 相关介绍1.1 感受野的定义贡献2 图卷积网络GCNGCN、GraphSAGE、GATDiscussions3 GeniePath3.1 Permutation Invariant 排列不变性Theorem 1 (Permutation Invariant 排列不变性)Remark 2...

2019-09-23 10:22:44 1025 0

原创 FastGCN: fast learning with graph convolutional networks via importance sampling 论文详解 ICLR 2018

文章目录1 简单介绍概率测度 probability measure自助法 bootstrappingGCN面临的两个挑战解决思路(创新点)2 相关工作3 通过采样进行训练和推理定理13.1 variance reduction 方差缩减Proposition 2(命题2)定理3命题43.2 In...

2019-09-21 11:16:56 2473 0

原创 Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning 深入了解半监督学习的图卷积网络GCN

文章目录1 简介2 相关工作2.1 Graph-Based Semi-Supervised Learning 基于图的半监督学习2.2 Graph Convolutional Networks 图卷积网络2.3 Semi-Supervised Classification with GCNs 用G...

2019-09-19 15:30:43 1130 0

原创 [PinSage] Graph Convolutional Neural Networks for Web-Scale Recommender Systems 论文详解KDD2018

文章目录摘要1 简介1.1 背景介绍1.2 推荐系统评测指标2 相关研究3 方法3.1 Problem Setup3.2 Model ArchitectureForward propagation algorithmImportance-based neighborhoodStacking con...

2019-09-18 16:00:20 1626 2

原创 GAT - Graph Attention Network 图注意力网络 ICLR 2018

文章目录1 相关介绍GCN的局限性本文贡献(创新点)attention 引入目的相关工作谱方法 spectral approaches非谱方法 non-spectral approaches (基于空间的方法)注意力机制 self-attention2 GATGraph Attentional L...

2019-09-17 11:13:46 3235 5

原创 GCN使用的数据集Cora、Citeseer、Pubmed、Tox21格式

文章目录Cora、Citeseer、Pubmed以Cora为例数据格式示例Tox21 数据集 本文分享一下图卷积网络GCN里用到的一些数据集的格式 Cora、Citeseer、Pubmed 数据集 来源 #图 #节点 #边 #特征 #标签(y) ...

2019-09-14 17:28:31 8378 9

原创 神经网络参数初始化方法

文章目录过大或者过小的初始化1. 所有的参数初始化为0或者相同的常数2. 随机初始化3. Batch Normalization4. Xavier限制均匀分布正态分布5. MSRA正态分布均匀分布总结及使用的概率公式 神经网络模型一般依靠随机梯度下降进行模型训练和参数更新,网络的最终性能与收敛得到...

2019-09-14 10:29:40 2416 0

原创 图卷积网络GCN代码分析(Tensorflow版)

文章目录GCN中的数据集和格式说明Cora、Citeseer、Pubmed以Cora为例数据格式示例代码分析`train.py``models.py``layers.py``utils.py``metrics.py``inits.py`参考 应某些同学要求,分享一个对GCN源码的分析。 源代码...

2019-09-08 18:27:55 11330 32

原创 【Graph Embedding】DeepWalk:Online Learning of Social Representations论文笔记

文章目录网络表示学习(Network Representation Learning,NRL)、Graph EmbeddingDeepWalk:Online Learning of Social Representations摘要:1. Introduction2. Problem Definit...

2019-09-06 11:02:19 570 0

原创 [论文笔记]:GraphSAGE:Inductive Representation Learning on Large Graphs 论文详解 NIPS 2017

文章目录Abstract1 IntroductionPresent work2 Related workFactorization-based embedding approachesSupervised learning over graphsGraph convolutional networ...

2019-09-04 09:46:54 8347 29

原创 训练集、验证集、测试集以及交验验证的理解

在人工智能机器学习中,很容易将“验证集”与“测试集”,“交叉验证”混淆。 文章目录训练集、验证集、测试集的区别交叉验证法什么时候使用交叉验证交叉验证的常见种类简单交叉验证种是S折交叉验证(S-Folder Cross Validation)留一交叉验证(Leave-one-out Cross Va...

2019-09-01 21:28:55 890 0

原创 numpy-堆叠函数stack(),hstack(),vstack()详解和参数axis=0,1,2

文章目录numpy中axis取值的说明stack()函数np.hstack()函数np.vstack()函数 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack()函数了。 先来看一下axis的用法,然后在stack()中就好理解了。 numpy中axis取值的说明 axis: ...

2019-08-27 17:05:12 1433 0

转载 图卷积网络、图神经网络必读论文

文章目录Content[Survey papers](#content)Models[Basic Models](#content)[Graph Types](#content)[Pooling Methods](#content)AnalysisEfficiencyApplicationsPhy...

2019-08-24 22:31:26 5987 2

原创 [论文翻译]-A Comprehensive Survey on Graph Neural Networks《图神经网络GNN综述》

文章目录摘要1 简介1.1 GNN简史1.2 Related surveys on graph neural networks1.3 Graph neural networks vs. network embedding1.4 Graph neural networks vs. graph ker...

2019-08-24 22:09:11 2022 1

原创 [论文笔记]Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

文章目录Abstract1. IntroductionPrevious GCN Training Algorithms2. Background图卷积网络(GCNs)3. Proposed AlgorithmWhy does vanilla mini-batch SGD have slow per...

2019-08-24 22:04:34 4833 2

原创 [LGCN论文笔记]:Large-Scale Learnable Graph Convolutional Networks

文章目录Abstract补充:如何理解 inductive learning 与 transductive learning?1. Introduction2. Related Work图卷积网络(GCNs)图注意网络(GATs)3. Methods3.1 Challenges of Applyi...

2019-08-24 22:00:09 1223 1

原创 DeepGCNs-Can GCNs Go as Deep as CNNs? ICCV 2019

文章目录Abstract1. Introduction2. Related Work3. MethodologyGraph Convolution NetworksDynamic Edges3.1. Residual Learning for GCNs3.2. Dense Connections ...

2019-08-13 19:23:24 3722 7

转载 如何理解拉普拉斯变换?

文章目录1 傅立叶变换简介1.1 直角坐标、极坐标1.2 傅立叶变换2 拉普拉斯变换3 变幅三角函数 拉普拉斯变换是对傅立叶变换的推广。关于傅立叶变换,可以看这三篇文章: 如何直观地理解傅立叶变换? 如何理解傅立叶级数公式? 从傅立叶级数到傅立叶变换 1 傅立叶变换简介 1.1...

2019-08-07 22:16:19 2720 4

提示
确定要删除当前文章?
取消 删除