一、题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。并将P对1000000007取模的结果输出。 即输出P mod 1000000007
二、输入描述
题目保证输入的数组中没有的相同的数字
数据范围:对于50%的数据,size ≤ 10 ^ 4
对于100%d 数据,size ≤ 10 ^ 5
数组中所有数字的值满足 0 ≤ val ≤ 10 ^ 9
要求:空间复杂度O(n),时间复杂度O(nlogn)
三、示例
3.1 示例1
输入:
[1,2,3,4,5,6,7,0]
返回值:7
3.2 示例2
输入:[1,2,3]
返回值:0
四、代码实现
public class Solution {
private long cnt = 0;
private int[] tmp;
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
* @param nums int整型一维数组
* @return int整型
*/
public int InversePairs(int[] nums) {
// write code here
tmp = new int[nums.length];
mergeSort(nums, 0, nums.length - 1);
return (int) (cnt % 1000000007);
}
private void mergeSort(int[] nums, int l, int h) {
if (h - l < 1) {
return;
}
int m = l + (h - l) / 2;
mergeSort(nums, l, m);
mergeSort(nums, m + 1, h);
merge(nums, l, m, h);
}
private void merge(int[] nums, int l, int m, int h) {
int i = l, j = m + 1, k = l;
while (i <= m || j <= h) {
if (i > m) {
tmp[k] = nums[j++];
} else if (j > h) {
tmp[k] = nums[i++];
} else if (nums[i] <= nums[j]) {
tmp[k] = nums[i++];
} else {
tmp[k] = nums[j++];
// nums[i] > nums[j],说明 nums[i...mid] 都大于nums[j]
this.cnt += m - i + 1;
}
k++;
}
for (k = l; k <= h; k++) {
nums[k] = tmp[k];
}
}
}
五、测试
class SolutionTest {
private Solution solution;
@BeforeEach
void setUp() {
solution = new Solution();
}
@Test
void test_inversePairs_1() {
int[] nums = new int[]{1, 2, 3, 4, 5, 6, 7, 0};
int countNum = solution.inversePairs(nums);
Assertions.assertEquals(7, countNum);
}
@Test
void test_inversePairs_2() {
int[] nums = new int[]{1, 2, 3};
int countNum = solution.inversePairs(nums);
Assertions.assertEquals(0, countNum);
}
}