论文翻译Very Deep Self-Attention Networks for End-to-End Speech Recognition
用于端到端语音识别的非常深的自注意力网络摘要最近,语音识别的端到端序列-序列模型引起了研究团体极大的兴趣。虽然以前的架构选择通常围绕时延神经网络(TDNN ,time-delay neural networks)和长短时记忆递归神经网络(LSTM),我们提出通过Transformer架构使用self-attention作为替代。我们的分析表明,深层的Transformer网络具有很强的学习能力能够超过以前的端到端方法,甚至可以与传统的混合系统相竞争。此外,我们对于编码器和解码器用高达48层的Transf
翻译
2020-10-27 10:24:40 ·
515 阅读 ·
0 评论