Bazel编译Tensorflow C++ 版本CPU/GPU DLL动态库(附tensorflow CPU/GPU开)发包

本文介绍了如何使用Bazel在Windows环境下编译Tensorflow C++版本的CPU和GPU动态库,包括CUDA和cuDNN的配置、MSYS64的安装、源码编译过程及解决编译中遇到的问题。此外,提供了编译好的库和头文件下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bazel编译Tensorflow C++ 版本CPU/GPU DLL动态库(附windows端tensorflow CPU/GPU开发包)

       采用官方Bazel编译,其中踩坑无数,只有程序员才能理解程序员的心酸。踩过的坑就不一一写了, 以下随便记录下其中出现的问题和自己解决的方法。

      在编译之前,首先搭配建立好自己的软件和系统环境。如果环境没建立好,后面Bazel编译的时候肯定会出错的。不想码太多文字在怎么搭建上了,亲自搜以下很容易看到。

    我使用的具体软件环境如下:

1. CUDA10.0 + CUDNN7.4:cuda_10.0.130_411.31_win10.exe、 cudnn-10.0-windows10-x64-v7.4.2.24.zip
2. tensorflow v1.13.2
3. Python 3.7.4:Anaconda3-2019.10-Windows-x86_64.exe
4. VS2015
5. Bazel -0.20
6. Msys64 (官网下载慢,先用了网络上的)

CUDA直接默认安装即可

cudnn解压后cuda/*下文件,拷贝到cuda文件下v10.0下。

cudnn和cuda一定是匹配的版本(从官方找对应的版本包下载即可)

安装完后,检测cuda是否运行正确如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\demo_suite

下命令行运行deviceQuery.exe

信息如下说明cuda正确(cudnn一般版本匹配就好)

可以进一步采用pycharm 验证CUDA是否正确

运行pip install tensorflow-gpu==1.13.2版本, 安装完后:

 import tensorflow as tf

如果报错以下:

ImportError: No module named '_pywrap_tensorflow_internal';DLL load failed: 找不到指定的模块

### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值